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ABSTRACT

In this study, the influence of a geostrophically balanced horizontal density gradient on turbulent con-

vection in the ocean is examined using numerical simulations and a theoretical scaling analysis. Starting with

uniform horizontal and vertical buoyancy gradients, convection is driven by imposing a heat loss or a desta-

bilizing wind stress at the upper boundary, and a turbulent layer soon develops. For weak lateral fronts,

turbulent convection results in a nearly homogeneous mixed layer (ML) whose depth grows in time. For

strong fronts, a turbulent layer develops, but this layer is not an ML in the traditional sense because it is

characterized by persistent horizontal and vertical gradients in density. The turbulent layer is, however, nearly

homogeneous in potential vorticity (PV), with a value near zero. Using the PV budget, a scaling for the depth

of the turbulent low PV layer and its time dependence is derived that compares well with numerical simu-

lations. Two dynamical regimes are identified. In a convective layer near the surface, turbulence is generated

by the buoyancy loss at the surface; below this layer, turbulence is generated by a symmetric instability of the

lateral density gradient. This work extends classical scalings for the depth of turbulent boundary layers to

account for the ubiquitous presence of lateral density gradients in the ocean. The new results indicate that

a lateral density gradient, in addition to the surface forcing, can affect the stratification and the rate of growth

of the surface boundary layer.

1. Introduction

The upper ocean is characterized by a surface mixed

layer (ML) that is weakly stratified in density compared

to the ocean interior. It is generally assumed that the

weak stratification is maintained by vertical mixing powered

by atmospheric winds and air–sea buoyancy fluxes and

that the depth of the ML is set through a competition

between surface fluxes and preexisting vertical stratifi-

cation. The ML, however, is not horizontally homoge-

neous, and horizontal density gradients can substantially

modify its depth and structure (e.g., Tandon and Garrett

1995; Marshall and Schott 1999; Thomas 2005; Boccaletti

et al. 2007).

The primary objective of this paper is to examine the

influence of a horizontal density gradient on convec-

tion in the ocean. We will refer to the general situa-

tion of convection into a baroclinic fluid as ‘‘slantwise

convection’’ to distinguish this case from classical ‘‘up-

right convection,’’ where horizontal density gradients

are unimportant. Thorpe and Rotunno (1989) objected

to the term slantwise convection, noting that the tur-

bulent heat flux can reverse sign compared to classical

convection. Here, we will use the term slantwise con-

vection but will distinguish two limits based on the sign

of the buoyancy flux. Near the surface, a ‘‘convective

layer’’ occurs where the turbulent buoyancy flux is re-

sponsible for most of the turbulent kinetic energy (TKE)

production. Below this layer, a second regime can arise,

which we will call ‘‘forced symmetric instability’’ (forced

SI), where shear production takes over as the primary

source of TKE.

SI describes growing perturbations in a rotating, strat-

ified fluid that are independent of the alongfront di-

rection. Consider a fluid with a uniform horizontal and

vertical buoyancy gradient; that is, N2 5 db/dz 5 con-

stant and M2 5 db/dx 5 constant, where b 5 2gr/r0 is

the buoyancy, r is the density, r0 is a reference density,

and g is the gravitational acceleration. Also, suppose

that the lateral stratification is in thermal wind balance

with a meridional flow VG; that is, dVG/dz 5 M2/f. It can
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be shown1 that this basic state is unstable to inviscid SI when

the bulk Richardson number RiB [ N2/(dVG/dz)2 , 1

(see, e.g., Stone 1966). The most unstable mode of in-

viscid SI has streamlines that are aligned with the iso-

pycnal surfaces. Thorpe and Rotunno (1989) and Taylor

and Ferrari (2009) found that turbulence can rapidly

neutralize SI through enhanced boundary fluxes and/or

entrainment of stratified fluid from a neighboring re-

gion. Taylor and Ferrari (2009) identified a secondary

Kelvin–Helmholtz instability that develops from the

along-isopycnal shear associated with SI.

To describe the dynamical role of a balanced lateral

density gradient, it is useful to introduce the concept of

potential vorticity (PV). The Ertel PV q can be defined as

q 5 ( f k 1 v) � $b, (1)

where v 5 $ 3 u is the relative vorticity and f is the

constant Coriolis parameter under the f-plane approxi-

mation. Here, f is assumed to be positive without loss of

generality. For a fluid with constant N2 and M2 and

a velocity in thermal wind balance, q 5 fN2 2 M4/f. In

a ML with a spatially uniform velocity and density, the

PV is zero. When M2 6¼ 0, the PV can become negative

through the baroclinic term 2M4/f.

A balanced state with a negative PV is unstable.

Convective instabilities develop when N2 , 0 or equiv-

alently RiB , 0. Other instabilities develop when N2 is

positive, but the baroclinic term is large enough to make

the PV negative. Kelvin–Helmholtz shear instability

develops when 0 , RiB , 0.25, whereas SI is the most

unstable mode when 0.25 , RiB , 0.95 (Stone 1966).

Consider a surface forcing that removes PV from the

ocean until regions of negative PV develop. Conditions

will then be favorable for convective and/or SI, which

will attempt to return the fluid to a neutral state by

eliminating the regions of negative PV. A low PV region

(q ’ 0) can therefore be thought of as a generalization

of the surface ML, which includes the possibility of

horizontal density gradients and nonzero stratification

(Marshall and Schott 1999). In light of this, we will refer

to the region affected by surface forcing as the low PV

layer instead of the mixed layer. In section 6, scalings are

derived for the growth and structure of the low PV layer,

which generalize traditional expressions for the growth

of the surface ML.

Haine and Marshall (1998) described numerical sim-

ulations of slantwise convection where a horizontal den-

sity gradient was formed by spatial variations in the

surface cooling. They found that the isopycnals aligned

with surfaces of constant absolute momentum, M 5

(M2/f)z 1 fx, implying a nonzero vertical stratification.

Straneo et al. (2002) also examined slantwise convection

in a parameter range consistent with deep convection.

They used parcel theory to predict the influence of M2

on the convective layer depth and zero PV. Straneo et al.

(2002) focused on convection at high latitudes and con-

sidered large surface buoyancy fluxes and relatively weak

horizontal density gradients, whereas in Haine and

Marshall (1998) the horizontal density gradient was in-

herently linked to the magnitude of the surface buoyancy

flux, so that strong horizontal density gradients occurred

only for strong forcing. In the ocean, strong fronts can

form via frontogenesis on scales much smaller than the

atmospheric forcing. In this paper, we vary M2 and the

surface heat flux independently and find that the de-

velopment and structure of the low PV layer enter in a

new dynamical regime for moderate heat fluxes and

strong, preexisting oceanic fronts.

The primary goals of this paper are to determine when

and how a horizontal density gradient affects turbulent

convection using the numerical simulations outlined in

section 2. Sections 3–5 describe features of convection at

a density front, section 6 presents a scaling analysis for

the depth of the low PV layer, and section 7 uses a

scaling analysis to predict the relative importance of the

horizontal density gradient during convective events

and the conditions when forced SI can be expected.

Section 9 offers conclusions.

2. Model setup

To examine the influence of a horizontal density gra-

dient on turbulent convection, we have conducted non-

linear numerical simulations in the idealized geometry

illustrated in Fig. 1. The front is represented by a con-

stant lateral buoyancy gradient superimposed on a con-

stant vertical stratification. ML fronts have been shown

to develop baroclinic instability through the formation

of submesoscale meanders with scales close to the sur-

face deformation radius of O(10 km) (Boccaletti et al.

2007). Because resolving submesoscale instabilities and

three-dimensional (3D) convective motions on scales of

O(1 m) would be computationally prohibitive, we limit

the domain size to horizontal scales smaller than the

deformation radius and focus on the influence of the

front on convectively driven turbulence.

The buoyancy and velocity fields are decomposed into

departures from a constant background state,

1 The stability criterion based on the bulk Richardson number

applies only when there is no vertical vorticity associated with

the basic state. A more general criterion for symmetric instability

is RiB 5 N2/j›UG/›zj2 , f/( f 1 ›VG/›x 2 ›UG/›y) (Haine and

Marshall 1998).
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b
T

(x, y, z, t) 5 b(x, y, z, t) 1 M2x,

u
T

5 u(x, y, z, t) 1 V
G

(z)j, dV
G

/dz 5 M2/ f , (2)

where the basic state is given by a constant lateral buoy-

ancy gradient M2 in thermal wind balance with the sheared

velocity VG. The momentum and buoyancy equations for

the perturbations are then solved numerically,

›u

›t
1 u

T
� $u� f y 5� 1

r
0

›p

›x
1 n=2u, (3)

›v

›t
1 u

T
� $y 1 w

dV
G

dz
1 fu 5� 1

r
0

›p

›y
1 n=2y, (4)

›w

›t
1 u

T
� $w 5� 1

r
0

›p

›z
1 b 1 n=2w, (5)

›b

›t
1 u

T
� $b 1 uM2 5 k=2b, and (6)

$ � u 5 0. (7)

Derivatives in the horizontal directions are calculated

with a pseudospectral method, and vertical derivatives

are approximated with second-order finite differences.

The time-stepping algorithm uses the Crank–Nicolson

method for the diffusive terms involving vertical deriv-

atives and a third-order Runge–Kutta method for the

remaining terms. Details of the numerical method are

given in Taylor (2008) and Bewley (2010). Periodic

boundary conditions are applied to the perturbation

quantities u and b in the horizontal directions. Because

the background buoyancy is a function of x, enforcing

periodicity effectively maintains a constant buoyancy dif-

ference across the computational domain (although the

local buoyancy gradient is free to evolve in time). As a

result, we are not able to capture the temporal evolution

of the front on large scales.

For simplicity, the simulations all begin with a uniform

vertical and horizontal buoyancy gradient and a velocity

field in thermal wind balance,

b
T

(t 5 0) 5 N2
0z 1 M2x, u

T
(t 5 0) 5 V

G
(z)j, (8)

where N0 is the constant initial buoyancy frequency.

Turbulent convection is forced by applying either a uni-

form surface buoyancy flux B0 [ k›b/›zjz50 or a ‘‘down-

front’’ wind stress tw
y /r

0
5 n›y/›zj

z50
1 n dV

G
/dz, which

will be discussed in section 4. To minimize inertial oscil-

lations that would be generated by impulsively forcing,

the amplitude of the surface forcing is increased linearly

from zero during the first day of simulation time. In the

absence of a wind stress, a free-slip boundary condition

is applied to uT at z 5 0. To speed the transition to a

turbulent state, random fluctuations are added to the

velocity field with an amplitude of 1 mm s21 with zero

mean and a white spectrum in Fourier space. To exam-

ine the impact of the horizontal density gradient on

convection, M2, B0, and tw are varied over the set of

simulations described in Table 1. Using a thermal ex-

pansion coefficient and heat capacity of 1.65 3 1024 8C21

and 4 3 103 J kg21 8C21, a typical imposed surface

FIG. 1. Schematic of the numerical simulation domain. The domain size given is for the

3D simulations; 2D simulations use a vertical domain size of 80 m and neglect variations in the

y direction.
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buoyancy flux of B0 5 24.24 3 1028 m2 s23 corresponds

to a surface heat loss of about 100 W m22.

The entire suite of simulations has been run in 2D in

an x–z plane neglecting all variations in the alongfront

(y) direction but retaining the full 3D velocity field (this

type of simulation is referred to as 2½D by some au-

thors). To test the impact of neglecting variations in the

y direction, two of the simulations have been repeated in

3D, which will be described in section 5. For the 2D

simulations, the computational domain size is Lx 5

1000 m, and Lz 5 100 m with Nx 5 1024 and Nz 5 128

grid points. The grid is uniform in the x direction and

stretched in the z direction with a minimum grid spacing

of Dzmin 5 0.17 m at z 5 0 and a maximum of Dzmax 5

1.4 m at z 5 2100 m. To allow internal waves to escape

from the bottom of the domain, a Rayleigh damping (or

‘‘sponge’’ layer) is applied in the region from 2100 m ,

z , 280 m, where the mean velocity and buoyancy pro-

files are relaxed toward their initial state. The damping

function takes the form ›b/›t 5 � � � 2s[(280 2 z)/20]2

(b 2 N0
2z) with s 5 0.005.

3. 2D simulations of upright and slantwise
convection

a. Buoyancy budget

The evolution of the mean buoyancy is described by

›hbi
›t

5� ›

›z
hw9b9i � huiM2 1 k

›2hbi
›z2

, (9)

where h�i denotes an average over the x and y plane and

for one inertial period in time and primes denote a de-

parture from the mean state. The horizontal conver-

gence of the buoyancy flux is identically zero and does

not appear in Eq. (9), because the perturbation quanti-

ties are periodic in x and y. For upright convection when

M2 5 0, the mean buoyancy can only be changed through

a divergence or convergence in the vertical buoyancy

flux. When a background horizontal density gradient is

present, the mean advection term huiM2 can also alter

the mean buoyancy profile.

The temporal evolution of the mean buoyancy fre-

quency hN2i 5 dhbi/dz with and without a background

horizontal density gradient is shown in Fig. 2. The initial

stratification N0 and the surface buoyancy flux B0 are

identical in both cases. Simulation 2D1 represents clas-

sical upright convection without a mean horizontal den-

sity gradient. In this case, the ML grows as the square root

of time, as expected for a constant surface buoyancy flux

(Turner 1973). Simulation 2D2 has a horizontal density

gradient M2 5 24.24 3 1027 s22, which represents a

relatively strong front. As in simulation 2D1, a turbu-

lent layer develops near the surface and grows in time.

However, in simulation 2D2 this layer is associated with

a weak but nonzero vertical stratification.

Profiles of the mean buoyancy frequency hN2i are

shown in Fig. 3a at t 5 15 days for a range of values of M2

and B0. The low PV layer generally coincides with the

region where hN2i, N0
2 (N0

2 5 9 3 1025 s22 in all cases).

The dependence of the low PV layer depth on the ex-

ternal parameters will be addressed in section 6. By

comparing with the parameter values listed in Table 1,

we see that the stratification in the low PV layer depends

on the background horizontal buoyancy gradient M2. As

shown in Fig. 3b, the stratification in the low PV layer

scales in such a way as to keep RiB ’ 1. Note that the

region with RiB’ 1 has not yet formed in simulation 2D3

but is seen at later times.

Along with the mean stratification profiles, the lead-

ing order terms in the buoyancy budget are dramatically

altered by the presence of a horizontal density gradient.

The terms in Eq. (9) are shown in Fig. 4 at t 5 15 days for

simulations 2D1 and 2D2. In simulation 2D1, with M2 5 0,

the decrease in buoyancy is balanced by the vertical

TABLE 1. Simulation parameters and bulk estimates. All simulations have f 5 1 3 1024 (s21) and N0
2 5 9 3 1025 s22. The entrainment

coefficients are a 5 ares 1 aSGS 5 [hw9b9i(z52H) 2 khN2i(z52H) /(B0 1 Bwind)] 2 kSGShN2i(z52H)/(B0 1 Bwind) and b [ [(tw
y M2/r

0
f )�

M2
Ð 0

�Hhui dz]/(B0 1 Bwind). The entrainment coefficients were averaged in time at the depth where hqi5 0.99Q0. This location was chosen

because the definition of H(t) used in section 6 (the location where the PV flux is identically zero) produces a very noisy time series.

Name M2 (s22 3 1027) B0 (m2 s23 3 1028) M2ty
w/(r0 f ) (m2 s23 3 1028) ares aSGS b

2D_1 0 24.24 0 0.08 0.22 0

2D_2 24.24 24.24 0 0.00 0.21 20.09

2D_3 22.12 24.24 0 0.02 0.21 20.04

2D_4 28.48 24.24 0 0.00 0.21 20.20

2D_5 24.24 28.48 0 0.01 0.11 20.03

2D_6 24.24 22.12 0 0.00 0.42 20.12

2D_7 24.24 0 24.24 0.01 0.21 20.04

3D_1 0 24.24 0 0.00 0.32 0

3D_2 24.24 24.24 0 0.00 0.29 20.05
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derivative of the buoyancy flux. Both are nearly constant

in the low PV layer, indicating that the buoyancy flux

profile is linear in z. Terms involving the constant dif-

fusivity k play a role at the top and bottom of the low PV

layer but not in the interior and are not shown. In con-

trast, for slantwise convection in simulation 2D2, the

divergence of the buoyancy flux is large for z * 210 m,

and lateral advection roughly balances the decrease in

the mean buoyancy for z * 210 m.

b. Momentum budget

The mean velocity profiles for simulation 2D2 are

shown in Fig. 5 after t 5 15 days when the low PV layer

depth is about 40 m. Below the low PV layer, the mean

FIG. 2. Evolution of the buoyancy frequency normalized by the initial value for a simulation of upright convection

(simulation 2D1) and convection at a density front (simulation 2D2). Contour lines of the x-averaged buoyancy are

also shown. The initial buoyancy frequency and the imposed heat flux are the same in both cases.

FIG. 3. (a) Buoyancy frequency and (b) bulk Richardson number averaged in x and for 1 inertial period centered

at t 5 15 days.
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velocity is unchanged from the initial state: namely,

hui 5 0 and ›hyTi/›z 5 M2/f. Inside the low PV layer,

viscous and turbulent momentum stresses lead to an

ageostrophic mean flow that is well described by an

Ekman balance:

f hui ’ �›hy9w9i
›z

1 n
›2hyi
›z2

and

�f hyi ’ �›hu9w9i
›z

1 n
›2hui
›z2

. (10)

The turbulent stress terms are shown in Figs. 5a,b and

nearly balance the mean velocity in the low PV layer,

with the exception of a thin viscous layer near z 5 0. The

mean velocity vectors are shown in Fig. 5c as a function

of depth. The shape of the mean velocity profile is rem-

iniscent of a turbulent Ekman spiral, with the addition of

a linear thermal wind resulting from the background shear

dVG/dz.

Instantaneous snapshots of the velocity and density

fields are shown in Fig. 6. Positive and negative values of

the streamfunction in the x–z plane are shown in black

and white contour lines, and density is shown using gray-

scale shading. Note that there is a nonzero alongfront ve-

locity hyi that is not shown. Striking qualitative differences

are visible in the flow with a front (2D2) and without a

front (2D1). In simulation 2D1, upright convection cells

extend throughout the low PV layer. The density in the

low PV layer is nearly uniform, and entrained patches of

thermocline fluid can be seen at the ML base. In contrast,

in simulation 2D2, the streamlines are roughly aligned

with the isopycnals and small-scale overturns are visi-

ble in the density field. Qualitatively, this is very similar

to the symmetrically unstable front described by Taylor

and Ferrari (2009).

c. PV budget

In upright convection, when M2 5 0, the mean buoy-

ancy equation is decoupled from the equations for the

mean horizontal velocity, and Eq. (9) can be closed quite

accurately by assuming that hw9b9i matches the imposed

buoyancy flux at the surface and decreases linearly to

zero over the ML depth. However, when M2 6¼ 0 and f 6¼ 0,

the equations for hbi, hui, and hyi are coupled. In this

case, the problem is significantly more difficult to ap-

proach analytically because the buoyancy flux hw9b9i and

the Reynolds stresses hu9w9i and hy9w9i need to be

modeled to close the mean momentum and buoyancy

equations.

FIG. 4. Mean buoyancy budget for (left) upright convection (simulation 2D1) and (right) slantwise convection

(simulation 2D2). Each term has been averaged in the x direction and for one inertial period in time, centered at

t 5 15 days. The statistical noise in the buoyancy flux divergence is the result of a relatively small sample size. The

buoyancy flux and mean velocity were sampled every 100 time steps and then averaged over the appropriate time

window.
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Progress can be made by combining the momentum

and buoyancy equations into a single equation for a

conserved scalar, the PV, which is defined in Eq. (1). The

evolution for the mean PV can be written as

Dq

Dt

� �

5
›hqi
›t

1
›hJzi

›z
5 0, (11)

where Jz is the vertical component of the PV flux vector

(Thomas 2005; Marshall and Nurser 1992)

J 5 qu 1 $b 3 F �D( f k 1 v) (12)

and D [ k=2b and F [ n=2u are F the diabatic and

frictional terms appearing in the buoyancy and mo-

mentum equations. Outside diffusive and viscous

boundary layers, the diabatic and frictional terms can be

neglected in Eq. (11), and PV is a conserved scalar.

Although the PV exhibits large local fluctuations in the

turbulent region, the mean PV provides a convenient

way to describe the evolution of the flow with and with-

out a horizontal density gradient.

The rate of PV destruction averaged over the low PV

layer is set through the upper boundary condition. The

upward PV flux at a rigid surface can be written

Jz
0 5�D(v � k 1 f ) 1 f

dU
G

dz
�F , (13)

where dUG/dz 5 f 21 k 3 $b is the surface geostrophic

shear (Thomas 2005). PV is extracted from the ocean

when J0
z . 0; for an inertially stable flow (v � k 1 f . 0),

a destabilizing surface buoyancy flux, D , 0, will be

associated with a loss of PV from the ocean. A PV loss

could also result if a frictional force F is applied with

a component in the direction of the thermal wind UG

(Thomas 2005). This possibility will be explored in the

next section.

The evolution of hqi as a function of depth and time is

shown for all simulations in Figs. 7–9. Using the initial

conditions in Eq. (1) (a uniform horizontal and vertical

density gradient and a velocity in thermal wind balance),

the PV at t 5 0 is Q0 5 fN0
2 2 M4/f. In each of the cases

considered here, Q0 . 0, so that the initial state is stable

with respect to SI. Regardless of the value of M2, the

surface buoyancy loss causes a layer to develop with

nearly zero PV. This low PV layer deepens in time,

eroding the high PV thermocline. The simulations show

that the rate of deepening depends on the surface buoy-

ancy flux B0 and the horizontal buoyancy gradient M2.

If we consider the evolution of hqi away from viscous/

diffusive boundary layers, on a time scale t that is much

larger than the inertial period (t � f21), we can show

that at leading order in tf (see appendix)

hq9w9i ’ f
›

›z
hw9b9i �M2 ›

›z
hy9w9i ’ �f

›hbi
›t

, (14)

where we have also used the turbulent Ekman balance in

Eq. (10). We have found that Eq. (14) holds even when

t 5 O( f) (see Fig. A1 and discussion in the appendix).

FIG. 5. Simulation 2D2: (a) Mean cross-front velocity, (b) mean alongfront velocity, and (c) hodograph of the mean

velocity vectors (all m s21). All quantities are averaged in x and for 1 inertial period centered at t 5 15 days. Dashed

lines in (a),(b) illustrate the turbulent Ekman balance given in Eq. (10).
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Because it involves derivatives of fluctuating quantities,

the instantaneous PV and PV flux contain high levels of

statistical noise, even when averaged in x. In practice, we

have found that it helps to integrate both in depth and

time to smooth some of the statistical fluctuations. Using

Eq. (14), and assuming that the turbulent fluxes vanish at

a sufficient depth (z 5 2‘), the integrated PV budget

can be written

FIG. 6. Instantaneous u–w streamfunction (contour lines) and density (shading; kg m23) for simulations (top) 2D1,

(middle) 2D2, and (bottom) 2D7 at t 5 15 days. The streamfunction contour interval is 0.1 m2 s21 and black (white)

contours indicate clockwise (counterclockwise) circulation.
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ðt

0

ðz

�‘

›hqi
›t

dz9 dt9 5�
ðt

0

hq9w9ij
z

dt9

5�f

ðt

0

›

›z
hw9b9ij

z
dt9

�M2

ðt

0

›hy9w9i
›z

�
�
�
�
z

dt9. (15)

The terms in Eq. (15) are shown in Fig. 10 for simula-

tions 2D1 and 2D2. The rate of change of the mean PV

is well described by the terms in Eq. (14) throughout

most of the low PV layer, although the diffusive buoyancy

flux is nonnegligible at the base of the low PV layer and

near the surface. Because M2 5 0 in simulation 2D1,

the buoyancy flux is responsible for all of the PV flux.

In contrast, the momentum flux makes up the dominant

FIG. 7. Mean PV as a function of time and depth for simulations (top) 2D1, (middle) 2D2, and (bottom) 2D3. The

dashed lines give the predicted zero PV layer depth from Eq. (23) as described in section 6.
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contribution to the PV flux for z , 210 m in simula-

tion 2D2.

4. 2D simulations of wind-driven slantwise
convection

Up until this point, we have discussed convection

driven by an imposed surface buoyancy loss. In the ocean,

a surface wind stress can also trigger convection. First,

winds can increase the flux of heat from the ocean to the

atmosphere, thereby modifying B0 directly. Second, if

there is a lateral density gradient and the wind blows

downfront (i.e., the wind stress is aligned with the geo-

strophic shear associated with the density gradient), then

the Ekman flow advects dense fluid over light, triggering

convective overturns. Thomas and Lee (2005) showed

FIG. 8. As in Fig. 7, but for simulations 2D4, 2D5, and 2D6. (top) The solid line shows Eq. (23) evaluated starting

from t 5 3 days.
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that the destabilization of the front by Ekman flow re-

sults in an effective wind-driven buoyancy flux given by

B
wind

5�
ð0

�H

huiM2 dz 5�
tw

y M2

r
0

f
, (16)

which is valid if the Ekman transport is fully contained

within the low PV layer 2H , z , 0. In this limit, the

frictional PV flux resulting from a downfront wind stress

is equivalent to the PV flux that would be associated

with a surface buoyancy flux of Bwind acting over the

Ekman layer depth (Thomas 2005).

One important distinction between buoyancy-forced

convection and convection induced by a downfront wind

stress is the vertical profile of hw9b9i. In classical upright

convection, the buoyancy flux is nearly linear in z and is

at maximum just below the surface diffusive boundary

layer (Deardorff et al. 1969). In the case of downfront

FIG. 9. As in Fig. 7, but for simulations 2D7, 3D1, and 3D2.
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winds, the profile of the effective buoyancy flux depends

on the velocity profile in the turbulent Ekman layer.

Because the velocity profile is itself modified by turbu-

lence created by destabilizing the water column, pre-

dicting the vertical structure of the effective buoyancy

flux is not trivial. To compare buoyancy-forced con-

vection to a downfront wind stress, one additional sim-

ulation (2D7) includes a downfront wind stress and no

surface buoyancy loss. Simulation 2D7 has the same hor-

izontal density gradient as simulation 2D2, and the wind

stress is prescribed so that the integrated effective buoy-

ancy flux Bwind matches B0 for simulation 2D2; that is,

ty
w/r0 5 2B0 f/M2.

A visualization from simulation 2D7 is shown in the

bottom panel of Fig. 6. Like simulation 2D2, the stream-

lines in the low PV layer are nearly aligned with the iso-

pycnals. It appears that the same dynamics seen for

slantwise convection forced are active in simulation 2D7;

forced SI develops in response to the surface forcing,

and shear instabilities lead to vertical mixing inside the

low PV layer. Unlike simulation 2D2, a sharp surface

density front is visible in simulation 2D7. Several iso-

pycnals outcrop at this front, which also appears to be

linked to the circulation cells. This circulation is very

similar to that described by Thomas and Lee (2005). The

surface Ekman flow is highly convergent at the front;

one side of the front has a stable density profile but the

other is convectively unstable, and the streamlines are

approximately aligned with the isopycnals beneath the

front. One apparent difference is that, on the stable side

of the front, the isopycnals in our simulation 2D7 are

aligned with the streamfunction, whereas in Thomas and

Lee (2005) the isopycnals are roughly perpendicular to

the streamfunction.

5. 3D large-eddy simulations

The previous sections presented results from numer-

ical simulations where variations in the alongfront (y)

direction were neglected. Because some properties of

turbulent convection are different in two and three di-

mensions (see, e.g., Moeng et al. 2004), we have repeated

simulations 2D1 and 2D2 using three-dimensional large-

eddy simulations (LES). The computational domain size

for the 3D simulations is Lx 5 1000 m, Ly 5 250 m, Lz 5

50 m. The resolution in the 3D simulations is lower than

the 2D simulations with Nx 5 256, Ny 5 64, Nz 5 50 grid

points. The grid is stretched in the z direction with a grid

spacing of 0.33 m at the upper surface and 1.64 m at the

bottom of the domain. A sponge region is placed from

250 m , z , 240 m with the same functional form as in

the 2D simulations.

The concept behind a large-eddy simulation is to solve

a low-pass filtered form of the governing equations. The

resolved velocity field is then used to model the subgrid-

scale stress tensor tSGS
i, j , whereas molecular values are

used for the explicit viscosity and diffusivity (here n 5 1 3

1026 m2 s21 and Pr 5 n/k 5 7). We have used the con-

stant Smagorinsky model,

tSGS
i, j 5�2C2D

2jSjS
i, j

, (17)

FIG. 10. PV budget with the advective PV flux approximated by Eq. (14) for (left) 2D1 and (right) 2D2. The time

integral is applied over 150 , t , 300 h.
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where D 5 (DxDyDz)1/3 is the implicit LES filter width

and C 5 0.13 is the Smagorinsky coefficient. The subgrid-

scale eddy viscosity from the Smagorinsky model is

n
SGS

5 C2D
2jSj, and a constant subgrid-scale Prandtl

number PrSGS 5 nSGS/kSGS 5 1 has been applied. Rep-

resentative profiles of the mean subgrid-scale viscosity

are shown in Fig. 11. Note that, unlike the 2D simulations,

nSGS varies in all three spatial directions as well as in

time. The constant eddy viscosity used in the 2D simu-

lations is shown as a dotted line in Fig. 11.

The initial flow in our simulations consists of a strati-

fied shear flow with a stable Richardson number. This

state presents a well-known problem in LES modeling:

the constant Smagorinsky model would yield a nonzero

subgrid-scale viscosity, even though the flow is non-

turbulent. Kaltenbach et al. (1994) found that by ex-

cluding the mean shear from the rate of strain tensor, jSj
in Eq. (17), the performance of the Smagorinsky model

is improved, and we have taken the same approach here.

In both 3D2 and 3D1, the plane-averaged subgrid-scale

kinetic energy is always less than 2% of the total tur-

bulent kinetic energy, with the exception of a brief initial

transient and the viscous surface layer.

Visualizations of the cross-front velocity and the den-

sity field are shown for simulations 3D2 and 3D1 in Fig. 12.

The parameters for simulations 3D2 (slantwise convection)

and 3D1 (upright convection) are identical to those for

simulations 2D1 and 2D2 (see Table 1). The convective

plumes in 3D upright convection (simulation 3D1) are

significantly smaller and less coherent than their 2D

counterparts. In contrast, simulations 2D2 and 3D2 for

slantwise convection are qualitatively very similar. Both

show along-isopycnal motion in the low PV layer accom-

panied by intermittent shear instabilities, with a convec-

tive layer near the surface. The along-isopycnal structures

in simulation 3D2 are coherent in the y direction, despite

some 3D turbulent fluctuations.

Profiles of the mean PV and RiB for both 3D simu-

lations are compared with the 2D simulations in Fig. 13.

To minimize statistical noise, these quantities have been

averaged over horizontal planes and over one inertial

period. Overall, the mean profiles and turbulent features

agree remarkably well between the 2D and 3D simula-

tions. In all simulations, a low PV layer with RiB ’ 1

develops, and the depth of this layer is nearly the same

for the 2D and 3D simulations. A surface convective

layer forms in both 3D2 and 2D2 where the buoyancy

flux is large and the stratification is relatively weak,

although the convective layer is slightly deeper in the

3D simulation. Finally, the base of the low PV layer is

more diffuse in both 3D simulations compared to their

2D counterparts.

6. Scaling for the depth of the low PV layer

Turbulent convection into a fluid with a stable vertical

stratification is a classical problem in the stratified tur-

bulence literature. Although this problem is traditionally

viewed in terms of the mean buoyancy equation [Eq. (9)],

the mean PV budget [Eq. (11)] is equally valid. When

M2 ’ 0, as in the limit for upright convection, the mo-

mentum flux does not contribute to the PV flux in Eq. (14)

and the mean PV budget reduces to an evolution equation

for hN2i [i.e., the derivative of Eq. (9)]. In this section, we

will derive an expression for the depth of the low PV layer

using the principle of PV conservation. This has the ad-

vantage of naturally incorporating the momentum flux

terms that are important in slantwise convection and the

role of a surface wind stress.

The classical scaling for the depth of the ML in up-

right convection, with a constant surface buoyancy flux

FIG. 11. Subgrid-scale eddy viscosity calculated using the modi-

fied constant Smagorinsky model in Eq. (17). The dashed vertical

line indicates the constant eddy viscosity that was used in the

higher-resolution 2D simulations.
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B0 5 kdb/dz into a linearly stratified fluid, is given by

(Deardorff et al. 1969)

H(t) 5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2aB

0
t

N2
0

s

, (18)

where the entrainment coefficient a, as defined in Table 1,

accounts for turbulent and diffusive buoyancy fluxes

across the ML base. For convection modified by rotation,

Levy and Fernando (2002) proposed that N0
2 1 4Cf 2

should replace N0
2 in the denominator of Eq. (18) where

C ’ 0.02 based on experimental data. For the parame-

ters considered in this study, 4Cf 2�N0
2, so the influence

of rotation in Eq. (18) can be neglected.

Straneo et al. (2002) used a heuristic argument to derive

an expression analogous to Eq. (18) including a horizontal

density gradient. By assuming that slantwise convection

mixes density along surfaces of constant angular momen-

tum, they argued that N0
2 in the denominator of Eq. (18)

should be replaced by N0
2 2 M4/f 2. However, in the forced

SI regime, we do not observe coherent convective plumes

extending to the base of the low PV layer as assumed by

Straneo et al. (2002), so it is not apparent that their scaling

will apply in our parameter range.

Recall that, in Eq. (14), the advective vertical PV flux

can be related to the time rate of change in the mean

buoyancy. This result can be used to relate the PV flux to

the surface forcing parameters. Consistent with the

scaling for the ML depth in upright convection and with

the numerical simulations described earlier, ›hbi/›t is

assumed independent of z in a low PV layer of depth H.

Based on Eq. (14), this is equivalent to asserting that the

PV flux is independent of depth in the low PV layer.

Integrating Eq. (9) over 2H , z , 0 gives

H
dhbi
dt

5 B
0

1 hw9b9ij�H
� k

›hbi
›z

�
�
�
�
�H

�M2

ð0

�H

huidz

5 (1 1 a 1 b)(B
0

1 B
wind

), (19)

FIG. 12. Velocity magnitude (color) and isopycnals (gray) for simulations (top) 3D2 and (bottom) 3D1 at t 5 15 days. Velocity lower than

the minimum on each color scale is made transparent.
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where the entrainment coefficient a accounts for the

turbulent and diffusive buoyancy flux at z 5 2H. When

M2 6¼ 0, the PV flux can also be associated with a mo-

mentum flux divergence, as seen in Eq. (14). An addi-

tional entrainment coefficient b has been introduced to

include the effect of the momentum flux at z 5 2H acting

on the lateral buoyancy gradient; b 5 0 in the absence of

a front (when M2 5 0). The definitions for a and b are

given in Table 1. Substituting Eq. (19) in Eq. (14), the

PV flux can be written in terms of the surface forcing,

hq9w9i
ML

5� f

H
(1 1 a 1 b)(B

0
1 B

wind
). (20)

With the expression for the PV flux as a function of the

surface forcing in Eq. (20), we can use the PV conserva-

tion equation to predict the growth rate of the low PV

layer. The low PV layer depth H(t) will be defined as the

location where the PV flux vanishes. When M2 5 0, this

corresponds to the location where the buoyancy flux is at

minimum [see Eq. (14)], which is consistent with the

traditional definition of the ML base in upright con-

vection. Using this definition of H(t) and integrating

the mean PV conservation equation [Eq. (11)] from

2H(t) , z , 0,

›

›t

ð0

�H

hqidz

� �

� dH

dt
hqij�H

5�hJz
0i, (21)

where J0
z is the surface PV flux defined in Eq. (13) and

hJ0
zi ’ hq9w9iML because the PV flux in the ML is pre-

sumed to be constant. Using Eq. (20) to replace hJ0
zi in

Eq. (21) yields an equation for H in terms of the surface

forcing and hqij2H, the PV in the thermocline:

H
›

›t

ð0

�H

hqidz

� �

� dH

dt
hqij�H

� 	

5

f (1 1 a 1 b)(B
0

1 B
wind

). (22)

When either forced SI or upright convection main-

tains a low PV layer with hqiML’ 0, Eq. (22) simplifies to

FIG. 13. (left) Mean PV and (right) bulk Richardson number at t 5 10 days. To reduce the statistical noise, both

quantities have been averaged over one inertial period.

1236 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 40



2H
dH

dt
5

f (1 1 a 1 b)

fN2
0 �M4/f

(B
0

1 B
wind

), (23)

where we have also used hqij2H 5 Q0 5 fN0
2 2 M4/f

based on the initial conditions used here. If we then

neglect the surface wind stress and any entrainment

(a 5 b 5 0), Eq. (23) reduces to the expression derived by

Straneo et al. (2002). If we neglect the lateral buoyancy

gradient (i.e., M2 5 0), Eq. (23) also limits to the expression

for the ML depth derived for classical upright convection

given in Eq. (18). Equation (23) is one of the primary

contributions of this paper.

The depth of the low PV layer found by integrating

Eq. (23) is shown as a dashed line along with the evo-

lution of the mean PV in Figs. 7–9. The depth of the

low PV layer is well captured by Eq. (23) with the ex-

ception of simulation 2D4, which is associated with the

largest horizontal density gradient. In this simulation,

a layer with a strongly negative PV forms near the surface

for t , 3 days, and the term in Eq. (22) involving the time

rate of change of the integrated PV is nonnegligible. If

we wait until the integrated PV becomes steady and

integrate Eq. (23), the growth in H is captured well for

the rest of the simulation (shown as a thin solid line in

Fig. 8).

By examining the values of a and b given in Table 1, it

appears that slantwise convection is less effective at en-

training fluid into the low PV layer than upright con-

vection. For example, a 1 b 5 0.3 in simulation 2D1 with

upright convection, but this sum is nearly zero in simu-

lation 2D4 with a deep layer of forced symmetric in-

stability. However, it is difficult to make precise

quantitative statements about the values of the entrain-

ment coefficients, because in all 2D and 3D simulations

the entrainment buoyancy flux is dominated by the

subgrid-scale processes Taylor and Sarkar (2008) found

that the Ellison scale provides a good estimate for

the entrainment length scale. In simulation 2D2, the

Ellison scale at the base of the mixed layer is LE [

hb92i1/2/(dhbi/dz) ’ 0.2 m, so very high–resolution simu-

lations would be needed to resolve the entrainment

process.

7. Scaling of the convective layer depth

We have seen in Eq. (14) and Fig. 10 that the PV flux

inside the low PV layer can be associated with either

momentum or buoyancy fluxes. When M2 5 0, as in

simulation 2D1, only the buoyancy flux term contrib-

utes to the PV flux. In contrast, when forced SI is active

as in the interior of the low PV layer in simulation 2D2,

the PV flux is dominated by the momentum flux term.

However, even in this case, the buoyancy flux term is still

important for z * 210 m. We will refer to this upper

region as the convective layer, because convective

plumes are visible in this layer and the stratification is

relatively weak compared to the forced SI layer. When

M2 is reduced, the buoyancy flux penetrates deeper into

the low PV layer, resulting in a deeper convective layer.

Forced SI is seen only below the convective layer but

within the low PV layer: that is, for 2H # z # 2h, where

h is the convective layer depth defined as the location

where hw9b9i 5 0. The relative sizes of h and H will,

therefore, determine whether a forced SI layer can form

for a given set of parameters. The objective of this sec-

tion is to derive a scaling for h based on the external

parameters.

Start by integrating the mean buoyancy equation

[Eq. (9)] from z 5 2h to z 5 0,

ð0

�h

›hbi
›t

1 M2

ð0

�h

huidz 5 B
0
, (24)

using the definition of h to assert that hw9b9ij2h 5 0 and

neglecting the diffusive buoyancy flux at z 5 2h. If, as in

section 6, we assume that ›hbi/›t is independent of z in

the low PV layer, then Eq. (24) can be rewritten as

M2

ð0

�h

huidz 5 B
0
� (1 1 a 1 b)

h

H
(B

0
1 B

wind
), (25)

where we have used the expression for dhbi/dt from

Eq. (19) and the definition of Bwind from Eq. (16).

Integrating the steady y-momentum equation be-

tween the same limits gives

f

ð0

�h

huidz 5 hy9w9i�h
1 tw

y /r
0
, (26)

where we have neglected the molecular viscous stress at

z 5 2h. We can combine Eqs. (25) and (26) to form a

scaling for h given an estimate for the alongfront mo-

mentum flux at the base of the convective layer hy9w9i2h.

To estimate the scaling for this term, we will introduce

separate turbulent velocity scales w* and y*. For the

vertical velocity fluctuations, we will use the convective

scaling w* ; [(B0 1 Bwind)h]1/3. If we assume that for

z . 2h, alongfront velocity fluctuations are caused by

convective mixing of the thermal wind shear, then a

natural scaling is y* ; h(dVG/dz) 5 hM2/f. Combining

these velocity scales gives a scaling for the momentum

flux hy9w9i(z52h) ; y*w* ; h(M2/f)[(B0 1 Bwind)h]1/3.

Using this scaling in Eqs. (25) and (26) then yields an

implicit expression for the convective layer depth,
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M4

f 2
(B

0
1 B

wind
)1/3h4/3

5 c (B
0

1 B
wind

) 1� (1 1 a 1 b)
h

H

� 	
 �

. (27)

Note that, in the limit of M2 5 0 for upright convection

without a mean horizontal velocity, it is reasonable to

assume that the Reynolds stress hy9w9i ’ 0. In this case,

the convective layer depth inferred from Eq. (27) matches

the depth where a linear buoyancy flux profile crosses

zero, which is consistent with the definition of h.

For sufficiently deep convective layers, the convective

scaling for the vertical velocity used in Eq. (27) would

also need to be modified by rotation (see, e.g., Jones and

Marshall 1993). This occurs when the convective Rossby

number Ro 5 (B1/2
0 / f 3/2h) , 1, where B0 5 kdb/dzz50 is

the surface buoyancy flux and h is the convective layer

depth. The deepest convective layer considered here is

h’ 50 m in simulation 2D1, corresponding to a convective

Rossby number of Ro’ 4.1. Therefore, although rotation

always plays a role in symmetric instability, it does not

directly impact the convective plumes in this study.

Evaluating the scaling factor c in Eq. (27) based on

the location where hw9b9i ’ 0 in the 2D simulations gives

c’ 13.9. As seen in Fig. 14a, Eq. (27) appears to capture

the convective layer depth defined as the location where

hw9b9i5 0 for various values of B0 and M2. In the forced

SI layer, for 2H , z , 2h, the buoyancy flux is generally

either small or negative, indicating that this layer is not

convective in the traditional sense. Using the parameters

from Straneo et al. (2002) in Eq. (27) gives a convective

layer depth of h’ 900 m. Because h is nearly equal to the

low PV layer depth of H ’ 1000 m, this likely explains

why forced SI was not observed in Straneo et al. (2002).

8. TKE budget

In upright convection, the turbulent buoyancy flux

hw9b9i acts as the dominant source of TKE at the ex-

pense of potential energy. We have seen that, in the

case of slantwise convection, the turbulent buoyancy

flux can effectively vanish inside the low PV layer (see

Fig. 10). This raises the question, is the low PV layer

turbulent? If so, how is turbulence maintained? To ad-

dress these questions, it is useful to introduce the TKE

budget,

›hki
›t

5 � ›

›z
hw9k9i1 1

r
0

hw9p9i � n
›hki
›z

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Transport

�hu9w9i›hui
›z
� hy9w9i›hyi

›z
� hy9w9i

dV
G

dz|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Shear production

1 hw9b9i
|fflfflffl{zfflfflffl}

PE Conversion

1 hu � ($ � tSGS)i
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

SGS work

��|{z}
Dissipation

, (28)

where k 5 1/2(u92 1 y92 1 w92) is the TKE, � 5 2nhs9i,js9i,ji
is the turbulent dissipation rate, and s9

i, j
[ (›u9

i
/›x

j
1

›u9
j
/›x

i
)/2 is the rate of strain tensor.

The shear production terms in Eq. (28) have been sep-

arated into terms involving the geostrophic and ageo-

strophic mean shear. It can be shown that the ageostrophic

terms do not generate TKE in a depth-integrated sense.

Using the inviscid form of the Ekman balance given in

Eq. (10), the ageostrophic shear production can be written

P
AG

5�hu9w9i›hui
›z
� hy9w9i›hyi

›z

’ 1

f

›

›z
� ›hy9w9i

›z
hu9w9i1 hy9w9i›hu9w9i

›z

� �

. (29)

In the absence of surface waves, hu9w9i and hy9w9i vanish

at z 5 0. If we also neglect the momentum flux carried by

internal waves into the thermocline, the vertical integral

of Eq. (29) is approximately zero. In this case, PAG does

FIG. 14. Mean buoyancy flux profiles. Averages have been taken

in x and t for one inertial period centered at t 5 15 days. Dots show

the scaling derived in Eq. (27) with an empirical constant of

c 5 13.9.
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not contribute to the depth-integrated TKE and repre-

sents the redistribution of TKE by the momentum stress

terms.

Now, consider the geostrophic turbulent production

term PG 5 2hy9w9i(dVG/dz) 5 2M2hy9w9i/f. We can

integrate the alongfront mean Ekman balance from

Eq. (10) to relate the turbulent momentum flux hy9w9i
to the cross-front velocity,

hy9w9i1 tw
y /r

0
� f

ð0

z

huidz9 5 0. (30)

The integrated cross-front velocity can be reexpressed in

terms of the buoyancy flux by integrating the mean

buoyancy equation [Eq. (9)] over the same interval,

M2

ð0

z

hui dz95 hw9b9ij
z
1

z

H
(B

0
1 B

wind
)(1 1 a 1 b) 1 B

0
,

(31)

where we have assumed that ›hbi/›t is independent of

z as in Eq. (19) and we have neglected the diffusive

buoyancy flux at z. The geostrophic production can then

be written as

P
G

5�M2

f
hy9w9i5�hw9b9i

� (B
0

1 B
wind

) 1 1
z

H
(1 1 a 1 b)

h i
. (32)

Therefore, the geostrophic production plus the buoy-

ancy flux is a linear function of z. This statement is true

regardless of the size of M2 and whether the front is

forced by winds or a surface buoyancy flux. Therefore, in

the forced SI layer, where the buoyancy flux is less than

or equal to zero, the geostrophic production must com-

pensate to keep PG 1 hw9b9i the same as in upright

convection. Although turbulent production is maintained

in both upright and slantwise convection, the relative

sizes of hw9b9i and PG determine the ultimate source of

TKE in the system. When hw9b9i. 0, TKE is generated

at the expense of the mean potential energy generated

by the surface buoyancy flux. In contrast, the geostrophic

production term represents energy extracted from the

thermal wind shear. Although our simulations keep the

strength of the front fixed in time, extracting energy

from the thermal wind shear could be expected to lead

to a geostrophic adjustment and a slumping of the front

in a freely evolving system. Geostrophic production,

which is active in forced SI, therefore represents a path-

way through which available potential energy associated

with the tilting isopycnals of the front can be converted

to TKE, which will either be dissipated through friction

or used to mix the vertical stratification.

Note that, although Eq. (27) includes the wind-induced

buoyancy flux, the scaling for hy9w9ij2h introduced in

section 7 does not include turbulence generated directly

by the wind stress. The Obukhov length L [ u3
*/(kB0)

is a measure of the relative importance of shear and

buoyancy forcing, where u* 5
ffiffiffiffiffiffiffiffiffiffiffi
tw/r0

p
. Monin–Obukhov

similarity theory (Monin and Obukhov 1954) states that,

when jz/Lj is small, shear production and viscous diffu-

sion dominate buoyancy effects, whereas, when z/L is

large and negative, the flow becomes independent of u*
and L and convective scaling is valid. This suggests that

we can use the Obukhov length L along with the con-

vective layer depth h to separate the low PV layer into

three regions: for z . O(2L), turbulence is dominated

by the wind stress; for 2h , z , O(2L), a convective

layer exists, where turbulence is produced by the com-

bined buoyancy fluxes B0 1 Bwind; and for 2H , z ,

2h, a forced SI layer can be expected. In simulation 2D7,

the Obukhov length L ’ 1.8 m; indeed, shear pro-

duction and viscous diffusion dominate the turbulent

kinetic energy budget for z . 22 m, the buoyancy flux is

large and positive for 22 m , z , 28 m, and a forced SI

region is present for z , 28 m.

9. Discussion

We have described numerical simulations for slant-

wise convection near the ocean surface forced by either

a surface buoyancy loss or a downfront wind stress.

Regardless of the strength of the horizontal density

gradient, a region of low PV develops, and the depth of

this layer has been derived using mean PV conservation.

Integrating Eq. (23) gives

H(t) 5 H2
0 1

2ft

fN2
0 �M4/f

(1 1 a 1 b) B
0
�

tw
y M2

r
0
f

 !" #1/2

,

(33)

where N0 is the buoyancy frequency at t 5 0, M2 5 db/dx

is the lateral buoyancy gradient, B0 is the surface buoy-

ancy flux, ty
w is the wind stress in the alongfront direction,

H0 is the low PV layer depth at t 5 0, and a and b are

entrainment coefficients defined in Table 1. Equation (33)

limits to the expression first derived by Deardorff et al.

(1969) for upright convection when M2 5 0. In writing

Eq. (33), we have assumed that the PV associated with

the front is constant and can be written as Q0 5 fN0
2 2

M4/f. If the background PV is depth or time dependent

or if it is affected by other terms including a relative
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vorticity, then Eq. (22) can be integrated to obtain a

more general expression for the low PV layer depth.

Two limiting dynamical regimes of slantwise convec-

tion have been identified based on the relative impor-

tance of the turbulent buoyancy flux. Near the surface, a

convective layer forms where the buoyancy flux is pos-

itive and the stratification is relatively weak. When the

horizontal density gradient is sufficiently large, a new

dynamical regime called ‘‘forced symmetric instability’’

(forced SI) occurs beneath the convective layer. In the

forced SI region, a vertical stratification develops so that

the bulk Richardson number is nearly neutral with re-

spect to SI. Also, as in SI, a flow develops that is nearly

aligned with the tilted isopycnal surfaces and inde-

pendent of the alongfront direction. Turbulence is

generated through shear instabilities, and the buoyancy

flux is no longer the dominant source of turbulent kinetic

energy.

It is common for one-dimensional ML models to pa-

rameterize turbulent fluxes in terms of a bulk Richardson

number (Phillips 1977; Pollard et al. 1973; Price et al.

1986). We have seen that forced SI maintains RiB 5 N2f 2/

M4 ’ 1, which is the neutral state for SI. If most of the

shear in the ML is in balance with an existing front,

forced SI might provide a physical basis for using a bulk

Richardson number criterion in ML models. It is also

worth considering how the scaling theory presented in

sections 6 and 7 applies to observed ML fronts. Consider,

for example, the outcropping Azores front observed by

Rudnick and Luyten (1996). It is convenient that, when

a 1 b 5 0, the ratio h/H, formed from Eqs. (23) and

(27), is independent of B0. Using parameters estimated

from Rudnick and Luyten (1996; N2 ’ 3.7 3 1025 s22,

M22 ’ 2.5 3 1027 s22, and f ’ 8 3 1025 s21) in these

equations gives h/H ’ 0.4 at t 5 2 days. Although the

surface fluxes were not reported in Rudnick and Luyten

(1996), the scaling analysis implies that, if PV was re-

moved from this front via a surface buoyancy loss or

a downfront wind stress, forced SI would likely occur in

a large fraction of the low PV layer.

The simulations presented here were designed to iso-

late the influence of a horizontal buoyancy gradient on

buoyancy and wind-driven convection. As a result, nu-

merous physical processes that are important to mixed

layer dynamics have not been included. For example, the

influence of surface waves, including wave breaking and

Langmuir circulation, may influence both the mixed layer

depth H and the convective layer depth h, particularly

when the flow is driven by a wind stress. We have also

not explicitly considered the influence of unbalanced

motions such as inertial oscillations or internal waves on

the flow evolution. An analysis of linear symmetric in-

stability developing from a background flow that contains

an ageostrophic component seems like an obvious ex-

tension of the present study. Clearly, there are many

fundamental questions left to be addressed in future

studies.

The numerical simulations that have been presented

here have been run for 10–20 days, and most results have

been reported at t 5 15 days, a long enough time for

some of the assumptions made here to break down in

practice. For example, ML baroclinic instabilities can

become finite amplitude on time scales of days, and it is

also unlikely that the surface forcing (either a buoyancy

flux or wind stress) would be constant over such a long

time period. The large integration time is a direct con-

sequence of the idealized initial conditions. To simplify

the initial conditions and to reduce the number of ex-

ternal parameters, we have initialized the simulations

with a large constant stratification throughout the entire

fluid volume. As a result, there is a significant spinup pe-

riod needed before a ML develops with a realistic depth

based on the forcing level. For example, in simulations

2D1 and 2D2, it takes about 10 days for the low PV layer

depth to reach 35 m. Because forced SI requires the con-

vective depth h to be smaller than the low PV layer depth

H, a long integration is necessary to observe forced SI,

even though SI can reach finite amplitude in less than

a day once H . h. In the ocean, when a preexisting low

PV layer is forced with a surface PV loss, forced SI

could develop much faster.

Our objective has been to examine the influence of a

horizontal density gradient on turbulent convection, and

our domain size has been set so that we are able to re-

solve the largest three-dimensional turbulent overturns

on scales of O(1m). Because of this resolution require-

ment, the domain size was not large enough to accom-

modate ML baroclinic instability, which occurs on larger

spatial scales than SI. Because the growth rate of SI is

faster than baroclinic instability for RiB , 0.95 (Stone

1966), SI is likely to occur before baroclinic instability.

However, the criterion for baroclinic instability depends

on gradients in PV, unlike SI, which occurs when the PV

is negative. Therefore, a front that has been made neu-

tral with respect to SI can still be unstable to a sub-

sequent baroclinic instability. The baroclinic instability

would further restratify the low PV layer by entraining

high PV from the thermocline. A topic of future re-

search is to investigate whether baroclinic instability

can ever overcome forced SI during times of surface PV

loss.
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APPENDIX

Scaling of the PV Budget

Consider the potential vorticity in its flux form,

q 5
›

›z
[b( f 1 z)] 1 $

H
� bk 3

›u

›z

� �

, (A1)

where z 5 ›y/›x 2 ›u/›y is the vertical component of the

relative vorticity. The convectively driven low PV layer

is actively turbulent and contains frequent density over-

turns. As a result, the PV exhibits large variations on

small space and time scales and the local Rossby number

z/f is not small. However, the mean PV is more regular,

and we can simplify the mean PV budget in the dynamical

regimes of interest here.

Define the averaging operator h�i to act over x and y and

over a fast time scale t. The mean PV can be written as

hqi5 f
›hbi
›z

1
›

›z
hz9b9i �M2 ›hy

T
i

›z
. (A2)

Note that the cross-front shear ›hui/›z does not appear

in the last term in Eq. (A2) because the front is aligned

with the x axis and the density difference across the

domain in the y direction is therefore taken to be zero.

Using Eq. (A2) in the inviscid PV conservation equation

and integrating in z gives

f
›hbi
›t

1
›hz9b9i

›t
�M2 ›hy

T
i

›t
1 hq9w9i5�C(t), (A3)

where t is a slow time scale. Applying the same aver-

aging operator to the buoyancy equation, we have

›hbi
›t

1 M2hui1 ›

›z
hw9b9i5 0. (A4)

Equations (A3) and (A4) can then be combined to yield

an expression for the mean PV flux,

hq9w9i5 fM2hui1 f
›

›z
hw9b9i1 M2 ›hy

T
i

›t
� ›

›t
hz9b9i.

(A5)

The constant of integration in Eq. (A5) was set to zero,

assuming that the PV flux vanishes in the thermocline.

Consider the following scaling applied to the two re-

gimes observed in slantwise convection:

x ; l, z ; h, t ; t
0
, hu

T
i ; U, u9, y9 ; u,

w9 ; w, b9 ; B
0
/w.

FIG. A1. Inviscid PV flux terms from Eq. (A5) for simulation 2D2. Angle brackets denote an

average in x and t for one inertial period, centered at t 5 15 days.
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a. Convective layer, z . 2h

Here, by definition, the buoyancy flux is a leading order

term in the buoyancy budget, implying that M2U #

O(B0/h). Using the scaling defined here, the ratio of

the third to the second term on the right-hand side of

Eq. (A5) is

M2Uh

B
0
t

0
f

# O(t
0

f )�1 (A6)

and the ratio of the fourth term in Eq. (A5) to the

buoyancy flux term is

uh

wlt
0

f
; (t

0
f )�1, (A7)

where we have used w/h ; u/l from the continuity

equation. Therefore, the last two terms in the mean PV

flux can be neglected compared to the buoyancy flux

term in the convective layer when t0 f� 1.

b. Forced SI

In this limit, the cross-front advection term M2hui
dominates over the buoyancy flux term. Comparing the

ratios of the last two terms in Eq. (A5) to the cross-front

advection term,

M2U

t
0

fM2U
5 (t

0
f )�1 and (A8)

uB
0

wlM2Ut
0
f

;
B

0

hM2Ut
0
t

,
M2U

M2Ut
0

f
5 (t

0
f )�1. (A9)

Therefore, in both of the limits of interest here, the

last two terms in Eq. (A5) can be neglected compared to

the larger of the first two terms, as long as the averaging

interval is large compared to the inertial period. Ne-

glecting these terms, the mean PV flux is approximately

hq9w9i ’ fM2hui1 f
›

›z
hw9b9i ’ �f

›hbi
›t

. (A10)

The individual contributions to the PV flux are shown in

Fig. A1 for simulation 2D2. Because variations in the y

direction are neglected in this simulation, z 5 ›y/›x.

Profiles of the PV flux are very noisy, so instead we plot

the vertical integral of ›hqi/›t, which is equal to hq9w9i
when n 5 k 5 0 [see Eq. (11)]. Note that the average

operator was applied for one inertial period, so the cri-

terion (t0 f)21� 1 is not strictly satisfied. Nevertheless,

with the exception of a relatively thin region near the

surface, last two terms in Eq. (A5) are small and Eq.

(A10) is a good approximation.
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