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ABSTRACT

In the major ocean basins, diapycnal mixing upwells dense Antarctic Bottom Water, which returns
southward and closes the deepest cell of the meridional overturning circulation (MOC). This cell
ventilates the deep ocean and regulates the partitioning of CO2 between the atmosphere and the
ocean. Our conceptual understanding of the deep stratification and MOC has evolved from classic
“abyssal recipes” arguments to a more recent appreciation of along-isopycnal upwelling in the
Southern Ocean, consistent with a weakly-mixed ocean interior. Both the deep stratification and
the deep MOC are here shown to be sensitive to the form of the surface buoyancy forcing in a
two-dimensional model that includes a circumpolar channel and northern basin. For a fixed surface
buoyancy condition, the deep stratification is essentially prescribed, whereas for a fixed surface
buoyancy flux, the deep stratification varies by orders of magnitude over the range of κ observed in
the ocean. These cases also produce different scalings for the deep MOC with κ, in both weak and
strong κ regimes. In addition, these scalings are shown to be sensitive not only to the type of surface
boundary condition, but also to the latitudinal structure of the surface fluxes. This latter point is
crucial as buoyancy budgets and dynamical features of the circulation are poorly constrained along
the Antarctic margins. This study emphasizes the need for caution in the interpretation of simple
conceptual models that, while useful, may not include all mechanisms that contribute to the MOC’s
strength and structure.

1. Introduction

Conceptual models have clarified scientific understand-
ing of the ocean’s deep stratification and meridional over-
turning circulation (MOC), while making predictions that
may be tested via observations and numerical modeling.
Our conceptual understanding has evolved, with two end
points being the uniform vertical advective-diffusive bal-
ance assumed by Munk (1966) and the theory posited by
Nikurashin and Vallis (2011, hereafter NV11), sketched in
Figure 1. This more recent view recognizes that the di-
apycnal diffusivity is an order of magnitude smaller than
Munk’s (1966) estimate (e.g. Ledwell et al. 1993), and so
transport is typically directed along isopycnals in the ocean
interior (Lumpkin and Speer 2007). The purpose of this
note is to highlight that, while the NV11 conceptual model
illustrates the importance of the Southern Ocean in the
setting the global stratification and MOC, it may change
dramatically with the with improved representation of the
dynamics in this region, especially at the Antarctic mar-

gins. As an example, modification of the surface boundary
condition over the Southern Ocean dramatically alters the
sensitivities of the deep stratification and MOC to diapyc-
nal mixing.

The deep cell of the MOC is supplied by the outflow
of Antarctic Bottom Water (AABW, Gordon 2009), up-
wells via the action of diapycnal mixing and returns to the
surface via outcropping isopycnal surfaces in the South-
ern Ocean (Lumpkin and Speer 2007). This circulation is
of interest because it may control the ocean-atmosphere
CO

2

partitioning over millennial time scales (Skinner et al.
2010). This has motivated a series of investigations of the
sensitivity of the deep MOC, for example to changes in sur-
face forcing (Stewart and Thompson 2012; Meredith et al.
2012).

The role of conceptual models is to summarize in a clear
and accessible way the mechanisms that control the deep
stratification and MOC. Munk’s (1966) landmark study as-
sumed the deep circulation to consist of uniform upwelling
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Fig. 1. A schematic of the residual-mean model of the
deep overturning circulation. In the Southern Ocean chan-
nel (y < 0), the deep circulation is directed along isopyc-
nals, and is constructed as a residual of a wind-driven mean
circulation that tends to steepen isopycnals, and and op-
posing “eddy” circulation that relaxes isopycnals by releas-
ing potential energy through baroclinic instability (Karsten
and Marshall 2002). The circulation is closed by buoyancy
loss to the atmosphere, which supports a southward dia-
batic transport in the surface mixed layer, and by down-
ward diapycnal diffusion of buoyancy in the northern basin
(y > 0), which supports upwelling across isopycnal sur-
faces.

supported by downward diffusive fluxes, and established
that a vertical diffusivity of κ ≈ 1 × 10−4 m2 s−1 was re-
quired to balance the export of AABW. This model dom-
inated thinking for decades until direct measurements of
mixing rates in the upper ocean established that the dif-
fusivity is closer to κ ≈ 1 × 10−5 m2 s−1 (Ledwell et al.
1993). The implication that transport in the ocean inte-
rior is largely along isopycnals emphasizes the role of the
Southern Ocean in closing water mass pathways, and is
reflected in models like that of Gnanadesikan (1999), later
extended to include the deep cell by Shakespeare and Hogg
(2012). Ito and Marshall (2008) proposed a residual-mean
model in which lateral mixing by mesoscale eddies and en-
hanced diapycnal mixing at depth constrain water mass
transformation in the deep ocean, and thus the strength of
the deep MOC.

The most recent dynamically-consistent model of the
deep cell is that of NV11, which agrees qualitatively with

observations of the deep MOC (Lumpkin and Speer 2007).
Their scalings for the sensitivity of the deep stratification
and MOC to diapycnal mixing are corroborated by coarse-
resolution simulations with a Gent and McWilliams (1990)
parameterization, and agree qualitatively with the eddy-
resolving simulations conducted by Munday et al. (2013).
Here we identify the Southern Ocean surface buoyancy con-
dition as an unexplored, but critical, component of this
model that has received little attention and is poorly un-
derstood.

We demonstrate that a straightforward but plausible
change in the surface boundary condition in a NV11-like
configuration qualitatively changes the properties of the
model. NV11 apply a fixed buoyancy profile at the ocean
surface, which is a suitable approximation for the strong
restoring to atmospheric temperature acting along the Antarc-
tic Circumpolar Current latitudes (Haney 1971). How-
ever, this boundary condition is not appropriate for the
coastal regions of Antarctica in which AABW is formed.
For example, brine rejection in near-shore polynyas may
be more closely approximated as a fixed surface buoyancy
flux (Chapman 1999; Wilchinsky and Feltham 2008). Here
we contrast the sensitivity of the model’s deep stratifica-
tion and MOC to the diapycnal diffusivity κ in the limiting
cases of a prescribed surface buoyancy versus a prescribed
surface flux.

2. Scalings for deep stratification and overturning

a. Residual-mean model

We employ the conceptual model of NV11, illustrated
in Figure 1. For simplicity we restrict our attention to
the deepest cell of the MOC, which is permitted to occupy
the entire water column. We could restrict the deep cell to
below 2–3 km depth, as in the real ocean, but our results
would not change qualitatively.

Following NV11, the stratification and overturning in
the Southern Ocean “channel” portion −l < y < 0 of our
model domain are governed by

J(ψ, b) = κbzz, (1a)

ψ = − τ

ρ
0

f
+ Ks, (1b)

ψ = −κL
bzz

bz
on y = 0. (1c)

Equation (1a) balances advective transport of the time-
and zonal-mean buoyancy b by a streamfunction ψ with
vertical diffusion κ across buoyancy surfaces. The advect-
ing streamfunction is a small residual (1b) of a wind-driven
mean overturning, proportional to the surface wind stress
τ , and an opposing eddy overturning proportional to the
isopycnal slope s = −by/bz (Marshall and Radko 2003;
Plumb and Ferrari 2005). We denote the reference den-
sity as ρ

0

, the Coriolis parameter as f , and the isopycnal
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and diapycnal diffusivities as K and κ respectively. We
obtain the boundary condition (1c) at y = 0 by assuming
zero isopycnal slope in the northern basin (by ≡ 0), and
integrating (1a) from y = 0 to y = L. To simplify the pre-
sentation we have taken τ , K, κ, and f to be constants; in
the real ocean these quantities vary by orders of magnitude.

In the limit of a small residual overturning streamfunc-
tion the two terms on the right-hand side of (1b) balance
at leading order and prescribe a uniform isopycnal slope in
the channel,

s =
τ

ρ
0

fK
= constant. (2)

This approximation holds under the assumption that the
diffusively-driven residual overturning is much weaker than
the wind-driven mean overturning,

ε =
κKLρ2

0

f2

lτ2

� 1. (3)

Here we scaled ψ using the right-hand side of (1c), using
h ∼ l · · · as a vertical scale for the stratification.

We also assume that the northern basin is much wider
than the channel, as is the case in the real ocean,

δ =
l

L
� 1. (4)

Under this assumption we may neglect the right-hand side
of (1a),

J(ψ, b) = 0 =⇒ ψ = ψ(b), (5)

which states that the residual streamfunction is constant
along isopycnals in the channel. It follows from (5) and
(2) that the buoyancy and streamfunction can be mapped
between z = 0 and y = 0 via

b(0, z) = b(−z/s, 0), ψ(0, z) = ψ(−z/s, 0). (6)

b. Fixed surface buoyancy

NV11 studied the case of a prescribed surface buoyancy
profile,

b = bs(y) on z = 0. (7)

They argue that this is a suitable approximation in regions
where temperature dominates the buoyancy variations and
restoring to the atmosphere is fast.

From (6) it follows that the buoyancy in the northern
basin is prescribed by the surface buoyancy profile,

b(0, z) = bs(−z/s). (8)

The stratification in the northern basin is therefore pre-
scribed by the surface buoyancy profile,

N2(z) = −1
s

dbs

dy

ØØØØ
y=−z/s

, (9)

so it is independent of the diapycnal diffusivity κ.

Table 1. List of parameters used in our analytical scaling and
numerical solutions.

Symbol Value Description

L 10000 km Northern basin width
l 2000 km Channel width
H 5000m Ocean depth
ρ0 1000 kg m−3 Reference density
Cp 4000 JK−1 kg−1 Specific heat capacity
α 2× 10−4K−1 Thermal expansion

coefficient
g 9.81m2 s−1 Gravitational constant
f −1× 10−4 s−1 Coriolis parameter
τ 0.1N m−2 Surface wind stress
Q0 10W m−2 Surface energy flux
K 1000m2 s−1 Isopycnal diffusivity
M2 5× 10−9 s−2 Minimum lateral stratification
γ 10−14 m−1 s−2 Lateral stratification gradient

We may similarly combine (7) with the northern bound-
ary condition (1c) to obtain an expression for the surface
residual streamfunction,

ψ =
κL

s

dyybs

dybs
on z = 0. (10)

At any fixed latitude y, the overturning ψ scales linearly
with κ. The latitude of the surface streamfunction max-
imum ψ

max

is determined by ∂yψ(y
max

, 0) = 0, so y
max

is independent of κ. Therefore the deep MOC strength
should scale linearly with κ, in agreement with the find-
ings of NV11. Intuitively this is because the surface buoy-
ancy profile sets deep stratification, which in turn sets the
structure of the overturning streamfunction by (1c).

c. Fixed surface flux

We now consider the case of a fixed surface buoyancy
flux at the ocean surface. This is arguably a more appropri-
ate boundary condition where salinity plays an important
role in setting buoyancy variations, like under ice.

Following Marshall and Radko (2003) we assume zero
stratification in the mixed layer (bz ≡ 0) and integrate
(1a) from the base of the mixed layer (z = 0) to the ocean
surface,

ψ =
B(y)
by

on z = 0. (11)

Here B is the downward buoyancy flux into the ocean sur-
face. We will restrict our attention to the case of surface
buoyancy loss, B ≤ 0. Using (6) along with (1c) we obtain

byy =
s

κL
B on z = 0. (12)

Integrating once with respect to y yields the surface lateral
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Fig. 2. Plots of surface properties in the Southern Ocean
channel: (a) the buoyancy profile bs, (b) the downward
buoyancy flux, converted to an equivalent energy flux Q =
ρ
0

CpB/αg, and (c) the streamfunction ψ, as derived in §2.
In each case the diapycnal diffusivity is κ = 5×10−5 m2 s−1.
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B ∝ sin (π|y|/l)

B ∝ sin 2(π|y|/l)

B ∝ sin 3(π|y|/l)

κ1/2
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Fig. 3. Dependence of the maximum overturning ψ
max

=
maxy,z |ψ| on the diapycnal diffusivity κ for different sur-
face buoyancy flux profiles B(y). The total buoyancy loss
at the ocean surface is the same for each profile. The pa-
rameters otherwise match those listed in Table 1.

stratification,

by|z=0

= M2 +
s

κL
B(y), B(y) =

Z y

−l

B(y�) dy�, (13)

where M2 = by|y=−l,z=0

is the minimum lateral buoyancy
gradient. Substituting (13) into (11) yields the surface
streamfunction,

ψ =
B(y)

M2 +
s

κL
B(y)

on z = 0. (14)

In Figure 2 we contrast the solutions produced from a
fixed surface buoyancy profile

dbs

dy
= M2 + 1

2

γ
≥
1 +

y

l

¥
+

γl

4π
sin

µ
2πy

l

∂
, (15)

versus a fixed surface buoyancy flux,

B(y) = −B
0

sin
µ
−πy

l

∂
. (16)

We could modify bs(y) and B(y) such that fixed-buoyancy
and fixed-flux cases in Figure 2(a–b) agree even more closely.
We have chosen (15) and (16) because they are simple, pro-
duce overturning streamfunctions of similar strength that
vanish at y = −l and y = 0, and yield robust numerical
result in §3. Our parameter choices are listed in Table 1.

As the buoyancy flux is always directed out of the ocean
(B ≤ 0), it follows from (12) that the stratification maxi-
mum lies at y = z = 0. Substituting y = 0 into (13) and
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dividing by −s we obtain the maximum stratification,

N2

max

= −M2

s
− B(0)

κL
. (17)

Intuitively, the net diffusive buoyancy flux convergence in
the northern basin must balance the net buoyancy loss at
the ocean surface.

As in the prescribed-buoyancy case, at any fixed lati-
tude y the streamfunction (14) scales linearly with diffu-
sivity κ when κ is sufficiently small. However, the form
of (14) implies that the latitude at which the streamfunc-
tion maximum lies itself depends on the diffusivity, y

max

=
y
max

(κ) (here the “maximum” of ψ refers to its most neg-
ative value). For example, a maximum of ψ always exists
close to y = −l: for a surface buoyancy flux that satisfies
B(y) → C(y + l)p as y → −l for some constant C, the
streamfunction (14) is maximized at

y
max

= −l +
∑
M2p(p + 1)κL

Cs

∏
1/(p+1)

, (18)

so there exists an maximum of ψ that approaches the south-
ern boundary y = −l as κ→ 0. Substituting (18) into (14),
we find that the overturning scales as ψ

max

∼ κp/(p+1) for
small κ. In general ψ may have local maxima at other lat-
itudes, but it follows from (14) that any other maximum
satisfies ψ

max

∼ κ � κp/(p+1) as κ → 0, so for sufficiently
small κ the extremum close to y = −l is the global max-
imum. Thus the dependence of the deep MOC strength
on diapycnal mixing depends not only upon whether the
surface buoyancy fluxes are fixed, but also upon the lat-
itudinal structure of the fluxes. We illustrate this point
in Figure 3, which shows the sensitivity of the MOC to
diapycnal mixing for different buoyancy flux profiles.

3. Numerical sensitivity to diapycnal mixing

a. Numerical configuration

The scalings derived in §2 are only valid for small ε� 1,
or equivalently for small κ. To obtain a more general pic-
ture of the dependence of the deep MOC on diapycnal mix-
ing, we now solve the residual-mean equations (1a)–(1c)
and (7), (11) numerically. We obtain a steady solution of
(1a) by integrating its time-dependent equivalent to steady
state,

bt + J(ψ, b) = κbzz. (19)

Our numerical approach follows that of Stewart and Thomp-
son (2013).

We apply boundary conditions of no-normal-flow (ψ =
0) at y = −l and z = −H. An intuitive additional bound-
ary condition at the ocean bed is that there should be no
normal buoyancy flux, i.e. bz = 0 at z = −H. However, by
integrating (1c) vertically from z = −H it may be shown
that if the stratification vanishes at the bottom boundary,

bz|z=−H = 0, then it must also vanish throughout the wa-
ter column, bz ≡ 0. Requiring no buoyancy flux through
the bottom boundary is therefore incompatible with our as-
sumption of flat isopycnals in the northern basin. Rather
than complicate the NV11 model with a more sophisticated
bottom boundary condition, we simply prescribe the strat-
ification at z = −H, under the assumption that the ocean
is bounded below by a boundary layer, or simply by more
ocean,

bz|z=−H = N2

bot

. (20)

For the case of fixed surface fluxes (11), we may simply
choose N2

bot

= 5 × 10−6 s−1, which corresponds to M2 =
5 × 10−9 s−2 using the parameters listed in Table 1. For
the case of fixed surface buoyancy, we prescribe N2

bot

to
balance the steady-state buoyancy budget,

Z L

−l

[ψyb]z=0

dy =
Z L

−l

©
κbz|z=0

− κbz|z=−H

™
dy. (21)

We approximate the surface terms in (21) using a uniform
slope (2) and the analytical streamfunction (10), using con-
tinuity of bz at y = 0 to determine the surface stratification
in the northern basin 0 < y < L,

N2

bot

=
L

|s|(L + l)
dbs

dy

ØØØØ
y=−l

+
1

|s|(L + l)
[bs]

0

−l . (22)

Note that the buoyancy profile (15) ensures that the stream-
function ψ vanishes at y = 0, so there is no advective buoy-
ancy exchange with the mixed layer in the northern basin.

Rather than impose (7) or (11) directly on z = 0, we
have found that the stability and accuracy of the solution
are improved by enforcing these conditions over a layer
of finite depth Hs = 100 m close to the surface. For the
fixed-flux case (11) we impose a downward buoyancy flux
B that decreases linearly in magnitude from z = 0 to z =
−Hs. For the fixed-buoyancy case (7) we replace the fixed
buoyancy flux B with a relaxative flux Ws(b − bs). The
surface piston velocity Ws = 5 × 10−5 ms−1 restores the
surface buoyancy with a timescale of around 3 weeks.

b. Sensitivity to diapycnal mixing

In Figure 4 we plot the numerically-computed stratifi-
cation and overturning in the fixed-buoyancy and fixed-flux
cases, for κ ranging over two orders of magnitude. Over this
range the overturning at y = 0 varies by 0.68 m2 s−1 in the
fixed-buoyancy case, and only by 0.26m2 s−1 in the fixed-
flux case. This is consistent with our scalings in §2, which
suggest that the overturning should scale linearly with κ
in the fixed-buoyancy case, and as κ1/2 in the fixed-flux
case (see Figure 3). In contrast the stratification exhibits
almost no change in the fixed-buoyancy case, but varies by
an order of magnitude in the fixed-flux case.
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Fig. 4. Plots of the numerically-computed buoyancy b in 10−2 ms−2 (solid contours) and overturning streamfunction ψ
in m2 s−1 (dashed contours) for diapycnal diffusivities of (a,d) κ = 5× 10−6 m2 s−1, (b,e) κ = 5× 10−5 m2 s−1, and (c,f)
κ = 5 × 10−4 m2 s−1. The left-hand panels employ the fixed surface buoyancy profile (15), while the right-hand panels
employ the fixed surface flux condition (16). All other parameters are listed in Table 1. Note the larger buoyancy contour
intervals in panel (d). The dashed contour interval in each panel is one tenth of the maximum overturning strength.
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Fig. 5. Sensitivity of (a,b) the maximum overturning strength ψ
max

and (c,d) the maximum stratification N2

max

in the
northern basin to the rate of diapycnal mixing. The left-hand panels employ the fixed surface buoyancy profile (15), while
the right-hand panels employ the fixed surface flux condition (16). For our numerical calculations we use the maximum
overturning at the boundary between the channel and the northern basin, ψ

max

= maxy=0

|ψ|.

In Figure 5 we compare the numerically-calculated max-
imum overturning and stratification with the scalings de-
rived in §2, for a range of κ between 10−6 m2 s−1 and
10−3 m2 s−1. For κ larger than this the overturning cell
begins to interact with the bottom boundary. The scal-
ings are quantitatively accurate as long as κ is sufficiently
small, as one would expect from the small-ε approximation
(3). The discrepancy between our scaling and the numeri-
cal results in Figure 5(b) is due to diffusive modification of
the overturning streamfunction ψ along isopycnals in the
channel. Some discrepancy is present for all values of κ,
no matter how small, because the maximum stratification
scales as N2

max

∼ κ−1, and so the diffusive term on the
right-hand side of (1a) is nonzero as κ→ 0.

In the fixed-buoyancy case the overturning appears to
undergo transition to a large-κ regime in which ψ

max

∼
κ1/2, as in NV11. The stratification also undergoes a tran-
sition, scaling approximately as N2

max

∼ κ−1/5 for large κ.
This transition is due to the fact that lateral transports
in the channel are supported by eddy thickness fluxes, i.e.
that the vertical isopycnal spacing must narrow in the di-
rection of the residual transport. As κ and ψ increase, this
effect begins to modify the stratification in the northern
basin, which in turn impacts the overturning circulation.
In the fixed-flux case both ψ

max

and N2

max

agree qualita-
tively with our scalings from §2. For very large vertical
mixing κ the stratification becomes almost uniform and
equal to N2

bot

. This fixes the surface buoyancy gradient,
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which in turn fixes the overturning circulation via (11).

4. Discussion

We have extended the conceptual model of NV11 to
demonstrate that the sensitivities of the deep stratification
N2

max

and MOC ψ
max

to diapycnal mixing are themselves
sensitive to the surface boundary condition. If the sur-
face buoyancy is prescribed then we recover the results of
NV11, in which N2

max

is effectively prescribed and ψ
max

scales as κ1 for small κ and κ1/2 for large κ. In contrast, if
the surface fluxes are prescribed via (16) then N2

max

scales
as κ−1 for small κ, so varying κ over the range observed
in the ocean changes the stratification by orders of mag-
nitude. The scaling for the overturning also changes, with
ψ

max

scaling as κ1/2 for small κ and as κ0 for large κ. How-
ever, in the fixed-flux case the scaling of ψ

max

with κ also
depends on the latitudinal structure of the flux, as shown
in Figure 3. This complicates prediction of the deep MOC
sensitivity to diapycnal mixing, as surface buoyancy fluxes
are poorly constrained (Cerovecki et al. 2011).

For the purpose of illustration we have focused on one
particular property of the NV11 model: its sensitivity to
diapycnal mixing. A complete study would co-vary many
of the model parameters, e.g. the wind stress τ , eddy dif-
fusivity K and diapycnal diffusivity κ. NV11 argued that
their model suggested that the deep ocean overturning is
sensitive to diapycnal mixing rates, while the stratification
is set by the surface boundary conditions in the South-
ern Ocean independently of diapycnal mixing. This result
overturned the traditional view pioneered by Munk (1966),
who argued that the ocean stratification is set by diapycnal
mixing alone. We have shown that the result of NV11 de-
pends on the choice of surface boundary condition. NV11
used a fixed buoyancy boundary condition, appropriate for
waters that outcrop equatorward of the sea ice line and are
strongly restored to atmospheric temperature. Switching
to fixed flux boundary conditions more appropriate to de-
scribe the waters that outcrop around the Antarctic Con-
tinent, we find that both the stratification and overturning
become sensitive to diapycnal mixing, but at rates depend-
ing on the specific latitudinal distribution of the fluxes. In
reality the ocean surface is likely subject to a combination
of these two boundary conditions. M. Nikurashin (personal
communication) plans to extend our work in an upcoming
paper and quantify the relative importance of these two
forcings in the present ocean.
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