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ABSTRACT

Finescale velocity and density fluctuations consist of both internal waves and vorticity-containing perturbations
(vortical modes). A recent decomposition of observations obtained as part of the North Atlantic Tracer Release
Experiment (NATRE) permits one to investigate isopycnal stirring associated with vortical modes. This stirring
is treated here as a relative dispersion problem in the context of 2D turbulence. Isopycnal diffusivities attain
values on the order of 1 m2 s21 after an initial transient of 5–10 days. After 2 weeks, a patch of tracer with
initial radius of 25 m is predicted to have evolved into a convoluted web having an rms radius of 2–4 km.
These estimates agree with observations of the evolution of an anthropogenic tracer in NATRE.

1. Introduction

Dispersion of tracers in the ocean interior, away from
boundaries, is dominated by adiabatic motions along
density surfaces (isopycnal dispersion) rather than by
diabatic three-dimensional turbulence. Adiabatic mo-
tions include a variety of different processes from me-
soscale eddies, to submesoscale vorticity perturbations,
and internal waves. All contribute to dispersion, but with
different efficiencies. The goal of this paper is to study
the dispersion of a tracer patch released in the midocean
thermocline and to determine which motions control the
isopycnal spreading of the tracer patch over the first few
weeks after release.

Dispersion of a tracer patch in a turbulent flow field
is achieved through persistent straining and the ensuing
filamentation of the patch. The rate of dispersion as-
sociated with turbulent eddies of any given scale de-
pends upon their size relative to the size of the patch.
The advection of a tracer patch by an eddy having a
scale much larger than the area of the patch results in
a quasi-coherent translation (meandering) rather than
dispersion. Eddies of size similar to the patch area act
as a coherent rate of strain and efficiently deform the
initial patch through filamentation, thus accelerating the
tracer dispersion. Eddies much smaller than the patch
size act incoherently and spread the patch at a much
slower diffusive rate. Whether big eddies or small eddies
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dominate the dispersion of a tracer patch of a certain
size depends upon their amplitude relative to eddies of
size comparable to the patch area.

In contrast to fully developed turbulence, the internal
wave field is inefficient at dispersing tracers. A single
internal wave is nondispersive in the sense that tracer
particles wind up at their original positions after a wave
period, and thus experience no net displacement. Dis-
persion by internal waves appears only as a second-
order Stokes drift effect, due to nonresonant wave–wave
interactions (Sanderson and Okubo 1988; Ferrari 2003,
unpublished manuscript), and through the coupling of
internal wave shear to vertical mixing (shear dispersion;
Young et al. 1982).

In this paper we focus on dispersion due to motions
with horizontal scales between 10 m and 10 km. In this
range of scales, the oceanic velocity field is dominated
by internal waves. However, Polzin et al. (2003) have
recently shown that internal waves coexist with quasi-
permanent potential-vorticity-carrying perturbations re-
ferred to as vortical modes. If vortical modes can be
characterized as a turbulent process, they can dominate
finescale dispersion despite having much smaller ve-
locities than internal waves.

An anthropogenic tracer (SF6) was released on an
isopycnal as part of the North Atlantic Tracer Release
Experiment (NATRE; Ledwell et al. 1998). The tracer
was clearly teased into filaments by the mesoscale eddy
field. Given observations of the length and width of the
filaments, Ledwell et al. (1998) infer the presence of a
finescale stirring agent with an isopycnal diffusivity of
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FIG. 1. Location of NATRE. HRP deployment positions of a large-grid survey are indicated as dots.
The open circle at (25.58N, 298W) denotes the position of a current-meter mooring deployed as part
of the subduction experiment. Finer-scale HRP surveys and the tracer deployment were just to the
northeast of the mooring.

1–2 m2 s21. They consider this too large to be associated
with internal waves. Here we attempt to quantify the
stirring properties of subinertial vortical modes in NA-
TRE. We do so by drawing upon a large body of work
(e.g., Rhines 1979; Provenzale 1999) concerning 2D and
quasigeostrophic turbulence and a recent documentation
of the vortical field using high-resolution profiler (HRP)
data from NATRE (Polzin et al. 2003).

The decomposition of the finescale field is described
in section 2. The dispersive properties of this field are
investigated in section 3. Results from the tracer release
experiment for the first six months are discussed in detail
in section 4. Our main result is that stirring by finescale
vortical modes provides a framework to interpret the
dispersion of tracer spots released in the ocean interior.
Discussion and summaries conclude the paper.

2. The vortical mode spectrum

NATRE took place in the southeastern portion of the
subtropical gyre (Fig. 1). The subinertial kinetic energy
is relatively low, (u2 1 y 2)1/2 , 3 cm s21, and the u–
S relation at the level of the tracer release, su 5 26.75
kg m23 or about 313 dbar, is exceptionally tight, as is
typical of North Atlantic Central Water. Thermohaline

intrusions are thus not likely to be a major stirring/
mixing agent at the tracer injection level.

An HRP cruise in April of 1992 served as an initial
site survey for the NATRE tracer injection. The HRP
is a free-falling, internally recording vertical profiler
(Schmitt et al. 1988). Relative velocities are measured
with an acoustic velocimeter. Profiles of oceanic veloc-
ity are computed from relative velocity, accelerometer,
and magnetometer data using a variation of the Total
Ocean Profiling System (TOPS) model (Hayes et al.
1984). Temperature, conductivity, and pressure are
sensed with an NBIS Mark III CTD. The HRP also
carries a microstructure suite consisting of two airfoil
shear probes and fast-response temperature and con-
ductivity sensors. The NATRE HRP data are discussed
in Polzin et al. (1995), Polzin (1996), St. Laurent and
Schmitt (1999), and in a companion paper (Polzin et al.
2003). The latter paper discusses a decomposition of
the finescale data into internal waves and subinertial
motions that is explicitly utilized here. There is no ev-
idence for submesoscale coherent vortices (meddies) at
the level of the Mediterranean salt tongue (1000 m) in
this initial site survey. We therefore feel justified in
excluding their possible effect at the injection level.

Polzin et al. (2003) used a model for the interaction
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FIG. 2. Horizontal wavenumber velocity spectra [2Ek(kh)] from the
vortical mode model (3) and the Zang and Wunsch (2001) model.
The latter spectrum has been converted to its one-dimensional form.
Rd is the mode-1 deformation radius (45 km) and is the dominant21kh0

horizontal scale defined from the energy content spectrum (Fig. 3).
The thin lines above the vortical spectrum define power laws 2akh

with a 5 1 and a 5 3. The local regime is defined by the energy
density spectrum being tangent to with 1 , a , 3.2akh

of waves with quasi-permanent density finestructure
(vortical modes) to decompose the observed vertical
wavenumber (m) spectrum of vertical shear Sz(m) and
strain Fz(m)1 into internal wave and vortical compo-
nents. The vortical mode contribution to the vertical
wavenumber strain spectrum was well captured by the
parametric representation,

A
F 5 . (1)z0 2 2 2 2(1 1 m /m )(1 1 m /m )1 2

The model parameters are A 5 3.14 (cpm)21, m1 5
0.0550 cpm, and m2 5 0.155 cpm.

Following Polzin et al. (2003), the vortical mode
shear spectrum can be estimated under the assumption
that motions are balanced. This assumption neglects cy-
clostrophic effects (Kunze et al. 1990; Riley and Lelong
2000), which, if important, could lead to uncertainty in
the estimate of the horizontal spectrum. Under quasi-
geostrophic scaling, shear is simply linked to strain via
the thermal wind relation,

2 2S 5 B N F , (2)z0 r z0

where [ / f 2m2 is the Burger number squared,2 2 2B N kr h

m and kh 5 (k2 1 l2)1/2 are vertical and horizontal wave-
numbers, (k, l) is the horizontal wave vector, and f and
N are Coriolis and buoyancy frequencies. The average
buoyancy and Coriolis frequencies for these data are
[ ]1/2 5 4.25 3 1023 s21 and f 5 6.4 3 1025 s21.2N

The vortical mode analysis of Polzin et al. (2003)
seems to support quasigeostrophic scaling, that is, a Bur-
ger number of order 1, and a small Rossby number. We
thus use geostrophy to relate the vertical and horizontal
spectra of vortical modes. Taking the ratio between shear
and strain of vortical modes, one finds a characteristic
aspect ratio of 5 1.6. This relationship is used to2Br

relate vertical and horizontal wavenumbers, that is, kh

5 m fBr/ . We now convert (1) and (2) to horizontal2ÏN
wavenumber spectra via the relationship Ek(kh)dkh 5
Ek(m)dm in which Ek represents the kinetic energy spec-
trum,

2 3 22ÏN fB E kr 0 h
2 22 21E (k ) 5 (m s /rad m )k h 2 2 2 2(1 1 k /k )(1 1 k /k )h1 h h h2

(3)

with (kh1, kh2) 5 fBr(m1, m2)/ and E0 5 0.25 (rad/2ÏN
m)21.

There are no available estimates to quantitatively as-
sess the assumption of a constant Burger number nor
the assumption behind the quasi-permanent density fine-
structure model. The random error associated with the
spectral estimates used to fit the parametric function in

1 Shear [Sz(m)] is the vertical derivative of horizontal velocity (uz,
y z). Strain [Fz(m)] represents variability in buoyancy frequency
squared normalized by the time mean , [(N 2 2 )/ ], rather2 2 2N N N
than any component of the rate of strain tensor of the isopycnal
velocity field.

(1) is small (with 95% confidence levels of roughly
650%). However, the bias errors associated with un-
certainty in the model assumptions from which the spec-
trum is inferred are not known.

The resulting spectrum of horizontal velocity (shown
in Fig. 2) is white, E(kh) } , at low wavenumber (lh

0kh

. 3 km, kh , 2 3 1023 m21). The rms velocity (u2 1
y 2)1/2 is small (0.007 m s21), relative to both the total
subinertial mesoscale contribution (0.022 m s21) and to
the superinertial internal wave contribution (0.048 m
s21).

The horizontal spectrum intersects the steeper me-
soscale spectrum of Zang and Wunsch (2001) at about
kh 5 1 3 1023 m21.2 Vortical modes dominate the me-
soscale tail and overwhelm the velocity gradients of the
mesoscale eddy field. At the smallest scales, relative
separation of particle pairs and tracer dispersion are a
result of coherent straining by all turbulent motions.
Given that vortical modes dominate the horizontal ve-
locity gradients, vortical modes likely dominate the rel-
ative dispersion process at small scales. At scales larger

2 Neither the Zang and Wunsch nor the vortical mode horizontal
spectrum of horizontal velocity are actually measured. The Zang and
Wunsch spectrum is a product of power law fits of an anisotropic
spectrum to sea surface height and sea surface temperature data and
the invocation of geostrophy to obtain horizontal velocity. Conversion
of their 2D spectrum having Ek(k, l ) } (k2 1 l2)(kl )24 at high wave-
number to a one-dimensional spectrum returns Ek(kh) } . The Zang22kh

and Wunsch spectral level is spatially variable. Here the spectral level
has been set, so as to match the total subinertial kinetic energy mea-
sured in NATRE. The vortical mode velocity spectrum represents a
simple conversion from the vertical displacement spectrum using a
constant Burger number.
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FIG. 3. Horizontal wavenumber velocity spectra [2khEk(kh)] from
the vortical mode model in a variance-preserving format. In this
format the variance is proportional to the area under the curve. The
peak in the energy content spectrum defines a scale which con-21k ,h0

tributes most of the total variance.

than the spectral intersection, particle pairs still undergo
an efficient straining process in response to mesoscale
velocity gradients, whereas the response to gradients in
the vortical field is an inefficient erratic sequence of
small random steps much like a random walk.

Note that the intersection between vortical modes and
mesoscale spectra shifts to a lower wavenumber if one
were to chose a steeper spectrum E(kh) } , as sug-23kh

gested by numerical studies of quasigeostrophic tur-
bulence in the direct enstrophy cascade regime (Salmon
1998). However the shift of the intersection is small (a
factor of 2 smaller), and there is not much observational
evidence to support E(kh) } . We will come back to23kh

this issue in the discussion section.
The vortical mode spectrum has a dominant horizon-

tal scale (,0 5 ) of about 200 m (Fig. 3). This cor-21kh0

responds to horizontal and vertical wavelengths of 1.2
km and 25 m, respectively. One can anticipate from Fig.
3 that vortical modes act as an effective diffusivity at
scales larger than the dominant scale (1 km). Vortical
modes at large scales have little energy, and they act as
small-scale random motions much like molecular agi-
tation. It is well known that molecular agitation can be
described as a random walk and represents a diffusive
process with constant diffusivity. As the low-wavenum-
ber energy is not important to the details of the dis-
persion process, the exact position of the intersection
will not qualitatively affect the results discussed in this
paper.

3. Isopycnal dispersion

In the previous section we described a partitioning of
the along-isopycnal motions into ‘‘fast’’ internal waves

and ‘‘slow’’ vorticity modes. Here we interpret the dis-
persive properties of vortical modes in the context of
2D turbulence. Our focus is to estimate the evolution
of an ellipsoid marked with some tracer. This is done
by estimating the spreading of particle pairs seeded in
the tracer patch, through the 2 3 2 inertia tensor of p(r,
t),

A (t) 5 r r p(r, t) dr, (4)p,i j E i j

where p(r, t) is the probability density function for the
spatial separation r of particle pairs and (r1, r2) are the
two along-isopycnal coordinates.

It is not possible to formally derive a closed prog-
nostic equation for p(r, t) and some approximations
must be made. Excellent reviews of the various ap-
proaches proposed over the last 50 years can be found
in Larcheveque and Lesieur (1981) and Bennett (1987).
Here it suffices to say that, for a statistically stationary
homogeneous and isotropic turbulent velocity field, it
is possible to write an equation of the form,

]P(r, t 2 t ; r )0 0

]t

1 ] ]P(r, t 2 t ; r )0 05 rD(r, t 2 t ) , (5)0[ ]r ]r ]r

for the radial dispersion of an initially isotropic distri-
bution of particles in which P(r, t 2 t0; r0) represents
the probability that a pair of particles separated by r0

at time t0 have a separation of r at the later time t; D
is the two-particle diffusivity, defined as the rate at
which two particles separate along the line that separates
them.3 The approximations that enter in the derivation
of (5) amount to either neglecting or parameterizing the
triple correlations between particle displacements and
velocities.

The details for the expression of the two-particle dif-
fusivity D depend on the closure scheme. All closures,
however, predict that D has the general form,

D(r, t 2 t )0

` t2t02
5 dk E (k ) 1 2 J (rk ) R(k , t) dtE h k h 1 h E h[ ]rkh0 0

(6)

in which Ek(kh) is the isotropic 2D spectrum of the

3 The full two-particle diffusivity D is a 2 3 2 tensor. For ho-
mogeneous and isotropic turbulent flows, the full tensor can be ex-
pressed in terms of the two-particle diffusivity along the particle
separation r, D, and the two-particle diffusivity perpendicular to the
particle separation, D†. One can prove that the sum of the diagonal
terms (the trace) of D is given by, Tr{D} 5 2 D 1 r dD†/dr. We
refer to D as two-particle diffusivity, but often this name is used for
Tr{D}. We will point out where confusion between the two definitions
might arise.
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FIG. 4. Two-particle diffusivity D in a vortical mode field as given
by (6). The values of D saturate for large r because we consider only
the contribution due to vortical modes; i.e., we truncate the spectra
of the advecting velocity field below the wavenumber khcut. In the
real ocean the two-particle diffusivity keeps growing with scale be-
cause of the straining by mesoscale eddies at wavenumbers below
khcut. The scale at which the curves of D saturate determines the
separation r beyond which the effect of vortical modes can be rep-
resented as an effective constant diffusivity. The two different lines
correspond to different choices of khcut: the upper line is obtained by
setting khcut equal to the scale at which the vortical mode spectrum
intersects the mesoscale spectrum as estimated by Zhang and Wunsch
(Fig. 2). The lower line is obtained by setting khcut 5 kh0, i.e., the
energy-containing scale of vortical modes.

velocity field and J1 is the Bessel function of order 1;
R(kh, t) is the Lagrangian correlation time for eddies of
wavenumber kh. Because of homogeneity, isotropy, and
stationarity, D depends only on the absolute particle
separation r 5 | r | and on the time t 2 t0 since release.

The expression in (6) can be interpreted as a two-
particle extension of Taylor’s formula for the single-
particle diffusivity. Single-particle diffusivity describes
the meandering of a single particle in a turbulent flow.
Two-particle diffusivity describes the separation of par-
ticle pairs and is related to the growth in size of a tracer
patch. Taylor’s formula states that the one-particle dif-
fusivity is given by the product of the eddy kinetic en-
ergy and the Lagrangian correlation function integrated
from time zero up to time t. The two-particle expression
is also the product of the eddy kinetic energy Ek(kh)
and the time integral of the Lagrangian correlation func-
tion for eddies of wavenumber kh. However, in (6) there
is a weighting factor 1 2 2(rkh)21 J1(khr) in the integral
over the wavenumbers kh. This factor is close to unity
for khr k 1 and acts as a differential operator for khr
K 1 because [1 2 2(rkh)21J1(khr)] ø r2/8. Physically,2kh

this weighting states that eddies of wavenumber khr K
1 tend to separate particles by coherent straining (two-
particle dispersion), while eddies with khr k 1 result
in the two particles executing independent random
walks (one-particle dispersion).

Suppose now that two particles are released at t 5 t0

so close to each other that their separation r lies in the
high-wavenumber subrange of the vortical mode spec-
trum in (3). That is, r is smaller than the energy-con-
taining scale introduced in Fig. 3 and rkh0 , 1. In this
subrange, the dynamics appear to be local in wavenum-
ber space because the vortical mode spectrum is tangent
to with 1 , a , 3 (Bennett 1984). Given local2akh

dynamics and sufficiently long t, the integral over t in
(6) becomes an integral time scale, which may be es-
timated using self-similar arguments:

`

21/2 23/2R(k , t) dt ; E (k ) k . (7)E h k h h

0

For a . 3, the approximation in (7) is not valid as the
integral is dominated by scales larger than kh. For a ,
1, the integral does not converge and dispersion is con-
trolled by the dominant length scale of the energy spec-
trum. That is, two-particle dispersion has attained its
absolute limit. It is not clear that (7) holds long before
the particle separation is as big as the energy-containing
eddies, but Bennett (1984) reports that it is well sup-
ported by numerical experiments in two-dimensional
turbulence. We assume the O(1) constant relating the
left and right-hand sides of (7) to be unity.

Once the two particles drift farther apart than the
energy-containing scale, r ; , the vortical mode21kh0

spectrum flattens (a , 1) and the dynamics become
nonlocal. In this range the integral over kh in (6) is
dominated by energy at wavenumber kh0 and dispersion

is absolute rather than relative. The two-particle diffu-
sivity asymptotes to a constant, D 5 ½U 2tL, where ½U 2

is the total kinetic energy and tL the Lagrangian integral
time scale. This is the long-time limit of Taylor’s for-
mula.4 If the integral time scale is estimated as the ratio
of the dominant length scale and the rms velocity, tL 5
,/(u2 1 y 2)1/2, then D 5 0.007 m s21 3 200 m 5 1.4
m2 s21.

Given the nonlocal nature of the vortical spectrum
(3) at low wavenumber, (6) is not valid unless the lower
limit of integration is moved away from kh 5 0 to a
critical wavenumber khcut. The definition of this wave-
number is imprecise. With reference to Figs. 2 and 3,
plausible choices for khcut can range from 1) the energy-
containing scale of vortical modes kh0 to 2) the inter-
section between the vortical modes and the eddy field
spectra. In both cases, the two-particle diffusivity as-
sociated with vortical modes is estimated by setting
Ek(kh) to zero for kh # khcut in (6).

In Fig. 4, we sketch D (6) for both choices of the
lower cutoff. The effect of vortical modes is to induce
a rapid growth of the two-particle diffusivity on scales
between 100 m and 1–2 km. On larger scales the eddy
diffusivity asymptotically approaches a value between
0.5 and 2.5 m2 s21 depending on the choice made for
khcut . Note that the two-particle diffusivity in the real
ocean keeps growing at scales larger than a few kilo-
meters because of strain in the mesoscale field. How-
ever, in our calculation we are considering only the ef-
fect of vortical modes. The scale at which the two-
particle diffusivity plotted in Fig. 4 saturates indicates

4 Here D is the along-separation, two-particle diffusivity and as-
ymptotically approaches the one-particle diffusivity. The trace of the
full two-particle diffusivity asymptotically approaches 2 times the
one-particle diffusivity.
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FIG. 5. Growth rate of the rms displacement of particle pairs de-
posited in a cloud of tracer (solid line). The displacement is estimated
as radius Ap(t) from (6). The upper panel corresponds to the lower
estimate of diffusivity in Fig. 4 and the lower panel to the higher
estimate. The dashed line depicts the long-term growth of the cloud
in the absolute dispersion limit, D 5 D(r 5 `, t 2 t0 5 `).

the scale at which dispersion due to vortical modes can
be described by a constant eddy diffusivity. The main
result is that stirring associated with vortical modes on
scales between a few hundred meters and a few kilo-
meters is on the order of 1 m2 s21 and not 0.01 m2 s21

as one would expect if the only process acting on those
scales was internal wave-induced dispersion (Young et
al. 1982; Ledwell et al. 1998; Ferrari 2003, unpublished
manuscript).

Now that we have an estimate for the two-particle
eddy diffusivity, we can attempt to evaluate the growth
rate of a tracer patch released in a vortical mode field.
Let us consider a tracer patch whose concentration is a
Gaussian circular blob with a standard deviation s 5
25 m. We seed this patch with particles distributed as
a Gaussian with the same standard deviation; the cor-
responding distribution of particle displacements p(r0)
is a Gaussian with s 5 3 25 m. Thus we set P(r,Ï2
t 5 0; r0) 5 p(r0) and solve equation (5). By computing
the integral in (4) at different times, we can track the
growth of the area occupied by particles. In Fig. 5 we
plot the radius of Ap as a function of time. The two
panels show respectively the results obtained with the
lower and upper values of the diffusivity in Fig. 4. The
growth rate of Ap is extremely fast during the initial
transient, but after 5–10 days it starts growing linearly
in time as the two-particle statistics asymptote to the
single-particle statistics.

The patch size to be inferred from Fig. 5 should not
be read as a detailed description for any particular tracer
release experiment during the first few days. The im-
portant information is that the tracer patch continues its
explosive growth for 5–10 days. During this initial tran-
sient, the tracer patch is formed by a few individual

streaks emanating from the release spot. Only as the
two-particle and absolute dispersion estimates converge
(a couple of weeks; Fig. 5) do the streaks wrap around
and form a web of contorted filaments that collectively
spread as the square root of time. In this stage ensemble
averages are meaningful to describe the patch as a
whole, but not the details of individual streaks. The
ensemble estimates give a blurred picture of the patch;
only the mean-square variance is predicted.

We can now compare the effect of vortical modes
with that of mesoscale eddies. The Zang and Wunsch
(2001) spectrum has a dependence at high wave-22kh

number. If one is to believe this form for the spectrum,
the local regime used in this section to estimate D ap-
plies also for the mesoscale field. Since locality implies
that dispersion at each scale is dominated by the energy
density of the velocity field at that scale, simple in-
spection of Fig. 2 implies dispersion by vortical modes
dominates dispersion associated with the Zang and
Wunsch (2001) spectrum at scales smaller than 1 km.
However this result depends upon whether one accepts
the high-wavenumber fits of Zang and Wunsch. Those
authors note that their high-wavenumber fits should be
viewed with caution. Note, as well, that their spectrum
is anisotropic at all scales, whereas one might expect
nonlinearity to lead to small-scale isotropy. We will re-
turn to these issues in the discussion of our results.

The present analysis is clearly subject to a number
of assumptions dictated by the limited information avail-
able on vortical modes. Nonetheless we believe that two
main results are robust: vortical modes induce an eddy
diffusivity of O(1) m2 s21 on scales of O(1) km and a
tracer patch gets distorted into an intricate web of fil-
aments within a two-week time.

4. The tracer release experiment

Because interpretation of the tracer release is an in-
tegral part of this study, we summarize Ledwell et al.’s
(1998) results in sufficient detail to motivate our anal-
ysis. The reader is directed to that paper for further
description, interpretation of the tracer data, and insight
into its limitations.

The tracer was injected (Fig. 6) as a set of nine streaks
from a towed vehicle over the time period of 5–13 May
1992 and sampled immediately thereafter over the pe-
riod of 14–31 May, an average time difference of two
weeks (1.2 3 106 s). Subsequent sampling took place
in October and November of 1992, April and May of
1993, and November of 1994. Our interest is confined
to the injection and first two surveys.

The injection determines the initial conditions for our
estimates of subsequent dispersion. The estimated rms
spread about the injection isopycnal associated with the
injection process was smaller than 2 m. The estimated
lateral dispersion of the tracer associated with the tur-
bulent wake of the injection apparatus was 25 m, but
might be as large as 100 m or as small as 10 m (J.
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FIG. 6. Column-integrated tracer concentrations from NATRE. Injection streaks are shown
as short heavy lines near 268N, 288W. Closed contours just to the west define a smoothed map
of the patch at the initial (2 week) survey. The sinuous features to the west and southwest
define tracer filaments encountered during the six-month survey. Point CM marks the location
of the subduction experiment central mooring. (Figure courtesy of Jim Ledwell, with permission
from Nature, Vol. 364, p. 701, Copyright 1993 MacMillan Magazines Ltd.)

Ledwell 2002, personal communication). The estimates
presented in Fig. 5 use an initial condition of r0 5 25
m. The nine streaks had an initial overall length (Li) of
about 100 km and an initial separation of about 5 km
(Fig. 6). These nine streaks defined an initial patch of
about 25 3 25 km2 extent.

The horizontal dispersion of the tracer at the two-
week interval was assessed with a multichamber sam-
pling system towed along the injection isopycnal (Fig.
7), with each sample returning an average concentration
estimate over 200–600 m of the tow track. At two
weeks, the tracer streaks had formed a nearly continuous
patch (Fig. 6) that had been stretched zonally and com-
pressed meridionally by a factor of 2 or so. The tracer
distribution was not smooth, however (Fig. 7). Ledwell
et al. interpret features within the patch as, ‘‘streaks that
had been stretched, reoriented, and distorted at scales
greater than a few kilometers and that had been broad-
ened in the cross-streak direction at smaller scales.’’
Over 40 crossings of the original streaks were identified
from 42 tows of the sampling system, and from these
crossings an rms cross-streak width of W14 days 5 300 6
100 m was obtained. Note that the analysis of the streaks
is subjective, the data are gappy, and the resulting es-

timates of streak width are at the nominal resolution of
the sampling apparatus. However, Ledwell et al. state
that the streak widths appear to grow in time over the
initial sampling period. This would not be the case if
the streak widths were underresolved. After this two
weeks, the total streak length was estimated as L14 days

5 250 km. Last, it was difficult to map the observed
streak crossings into a structure that could be identified
as resulting from the initial nine streaks (J. Ledwell
2002, personal communication). That is, the observed
streaks at the two-week sampling interval were so con-
voluted that the initial condition cannot be reconstruct-
ed.

By October–November of 1992 the mesoscale eddy
field had teased the tracer patch into elongated filaments
(Fig. 6). There was a clear distinction between the tracer
containing filaments and surrounding water. Sampling
of the tracer in October of 1992 again utilized a towed
vehicle. The sampling was somewhat modified so that
average concentrations over 600 m at the injection is-
opycnal were obtained. Sampling during November was
done with conventional rosette casts and Niskin bottles
at a 9-km station spacing. Ledwell et al. infer the total
filament length to be L6 months 5 1800 km and, from the
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FIG. 7. Tracer concentrations from the multichamber sampling system at the injection isopycnal. (Data from J.
Ledwell 2002, personal communication.)

October tows, an rms streak width of W6 months 5 3 (2–
5) km. Little structure was observed within or at the
edges of the filaments at this point. This may have been
a result of the increased sampling interval or typically
lower concentration levels in combination with greater
contamination of the samples (J. Ledwell 2002, personal
communication).

The basis for Ledwell’s estimate of isopycnal diffu-
sivity was to consider the evolution of a tracer with
concentration c in a uniform strain field (u, y) 5 (2Gx,
Gy),

2c 2 c Gx 1 c Gy 5 D¹ c.t x y (8)

In this representation, the x and y axis represent the
straining and compressing directions of the rate of
strain. The rms length and width of a filament are given
by the equations for the normalized second moments
of c:

2 2] ^x c& 1 2G^x c& 5 2D and (9)t

2 2] ^y c& 2 2G^y c& 5 2D. (10)t

After an initial transient, the length ^y2c& of a filament
grows exponentially as exp(2Gt), while the width reach-
es a balance between strain and diffusion ^x2c& ø D/G.

Following (Garrett 1983), Ledwell et al. (1998) use

their estimates of streak length to produce an estimate
of the rate of strain:

G 5 log(L /L )/14 days14 days 14 days i

27 215 (8 6 4) 3 10 s and

G 5 log(L /L )/6 months6 months 6 months i

27 215 (3 6 0.5) 3 10 s .

Ledwell et al. note that the resulting rate of strain estimate
(G14 days) is not expected to be uniform in time or space,
and go so far as to suggest a contribution to G14 days as-
sociated with motions within the patch.

The cross-streak widths were then assumed to rep-
resent a balance between straining and diffusion:

2D 5 G 3 W14 days 14 days 14 days

2 215 0.07 6 0.04 m s and
2D 5 G 3 W6 months 6 months 6 months

2 215 3(1 2 10) m s .

Sundermeyer and Price (1998) argue that the rate of
strain G in (9) and (10) is given by G 5 G6 months/2 so
that G^x2c& 5 2(0.6–6) m2 s21 (Ledwell et al. 1998).
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This quantitatively agrees with our asymptotic estimates
of the rate of vortical mode dispersion,

2 21D(t 2 t 5 `) 5 0.5–2.5 m s .0

Conversely, use of our dispersion estimates in (9) re-
turns a prediction for the rms streak width (2–4 km),
which agrees with the 6-month observations.

5. Discussion

a. Interpretation

Our interpretation of these tracer observations is as
follows. The use of (9) and (10) assumes that, first, the
stirring process represented by G and the turbulent dif-
fusion process represented by D operate on two different
scales and, second, the tracer patch has a size inter-
mediate between those two scales. At the two-week sam-
pling interval, use of this model to interpret the vortical
mode results (Figs. 4 and 5) is misleading because there
is no scale separation between the size of the tracer patch
and the vortical turbulent motions: the streak widths
(W14 days 5 300 6 100 m) are nearly the same as the
vortical mode dominant scale 5 200 m. That the21kh0

two-week diffusivity has already reached its asymptotic
value of D(t 2 t0 5 `) 5 0.5 2 2.5 m2 s21 and far
exceeds the tracer-inferred value of D14 days 5 0.07 6
0.04 m2 s21 is inconsequential. The D(t 2 t0 5 `) 5
0.5–2.5 m2 s21 values describe the evolution of the
envelope of filaments, while the tracer-inferred values
D14 days are an attempt to interpret the individual filament
widths.

We believe the convoluted structure of the observed
tracer field represents the web of intertwined filaments
associated with vortical mode stirring described in sec-
tion 3. The mesoscale rate of strain is responsible for
distorting and reorienting the initial 25 3 25 km2 patch
by a factor of 2 or so. However, the mesoscale has
insufficient structure and decorrelation time scales that
are too large to create the variability on the scales ap-
parent in Fig. 7 (see below). In contrast, the two weeks
between injection and sampling is sufficient for the vor-
tical mode two-particle statistics to approach their sin-
gle-particle counterparts. This implies sufficient time for
the filaments to wrap around themselves and create a
convoluted web. Our estimates of the rms separation
[( 5 2–4 km] are sufficiently largeÏA (t 5 14 days)p

as to imply a merging of the nine initial tracer filaments.
Curiously, we find the streaks to be separated by a

distance slightly larger than what we infer as 2p times
the vortical mode dominant scale. Numerical simula-
tions (Holloway and Kristmannsson 1984) suggest a ten-
dency for tracer fluxes to be dominated by contributions
at scales slightly larger than the dominant eddy scale
and many depictions of passive tracer distributions in
the literature appear to compare favorably with our in-
terpretation of a finescale tracer web.

b. Mesoscale eddies

At the two-week sampling interval the patch was ob-
viously deformed by a factor of 2 or so, presumably by
the mesoscale. Our kinematic split in the spectral do-
main between vortical modes and the mesoscale eddy
field ignored this interaction. This kinematic split is jus-
tified if the mesoscale spectrum has a slope, as sug-22kh

gested by Zhang and Wunsch (2001). In this scenario
dispersion is local; that is, it is dominated at each scale
by the kinetic energy density at that scale, both in the
mesoscale and in the vortical mode regimes. Thus at
subkilometer scales dispersion is dominated by the more
energetic vortical mode component, while at larger
scales the mesoscale eddy field dominates.

On closer inspection, though, the tracer observations
cast some doubts on the spectral slope proposed by
Zhang and Wunsch. Filamentation is evident after 6
months for scales above a few kilometers, while the
tracer is well homogenized on smaller scales. A nonlocal
stirring field creates strong filamentation down to scales
where other processes remove variance. This limit is
well studied in the literature on chaotic advection (Ot-
tino 1988). The opposite happens in the local limit: the
velocity field decorrelates so fast that filaments do not
survive for long and tend to wrap up and homogenize
the tracer (Falkovich et al. 2001). The picture that
emerges at 6 months after release is consistent with a
nonlocal mesoscale spectrum that creates filaments
down to scales of a few kilometers and a local vortical
mode spectrum that homogenizes the tracer on smaller
scales. In order for this picture to work, the vortical
modes must be strong enough to arrest the filamentation
due to mesoscale motions.

The relative dispersive strength of vortical modes and
mesoscale eddies, in the limit of steep mesoscale spec-
tra, can be estimated as follows. Classical theory of two-
dimensional and quasigeostrophic turbulence in the di-
rect enstrophy cascade predicts spectral slopes of 23kh

(Kraichnan 1966). A straightforward implication is that
the two-particle diffusivity scales like

1/3 2D(r) } h r , (11)

where h is a constant entrophy flux. Observations sug-
gest that D(100 km) ø 1000 m2 s21. According to the
scaling in (11) then D(1 km) ø 0.1 m2 s21, which is
an order of magnitude smaller than the two-particle dif-
fusivity due to vortical modes. Thus, vortical modes
dominate dispersion at small scales, even if one accounts
for nonlocal effects caused by mesoscale eddy field.

c. Generation and evolution of the vortical field

The vortical spectrum is interpreted here as a product
of both nonlinear interactions and forcing. Polzin et al.
(2003) suggest that vortical modes in this dataset rep-
resent buoyancy anomalies resulting from internal
wavebreaking. Turbulent patches of over 20-m vertical
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extent are apparent in the microstructure data (e.g., Pol-
zin 1996). Given a rough equivalence between internal
wave and patch aspect ratios (Marmarino et al. 1985;
Osborn and Lueck 1985) and an inferred internal wave
aspect ratio of 0.5 f / (Polzin et al. 2003), internal2ÏN
wavebreaking could easily force buoyancy anomalies
with horizontal scales of 1 km. As a combination of
both forcing and nonlinearity, the spectral slopes of the
vortical mode spectrum need not correspond to the clas-
sical inverse energy [E(kh) } ] or enstrophy cascade25/3kh

[E(kh) } ] subranges.23kh

d. Geographic variability

The result we have obtained may be rather peculiar
to the southeastern portion of the North Atlantic sub-
tropical gyre. If vortical motions are substantially forced
by internal wave breaking, the geographic variability in
the open ocean thermocline removed from bathymetry
may be small. The same cannot be said of the mesoscale
eddy field. If the mesoscale spectrum was a factor of
100 larger, as is the case in the more energetic portions
of the subtropical gyre (Zang and Wunsch 2001), dis-
persion by eddies on the submesoscale may well over-
whelm any signature of dispersion by vortical motions.
As we learn more about vortical mode climatology, (9)
can be used to define the arrest scale.

6. Summary

The release of an anthropogenic tracer on an isopyc-
nal at about 300-m depth in the southeastern part of the
North Atlantic subtropical gyre returned a unique pic-
ture of isopycnal dispersion. Ledwell et al. (1998) found
the following.

• The initial tracer streaks, less than 100 m wide and 5
km apart, had blended into one nearly continuous
patch within two weeks of the release. The tracer dis-
tribution was not smooth, however. The patch con-
sisted of streaks having width of 300 6 100 m and
separation of several kilometers.

• The initial patch was teased into a set of sinuous
streaks separated by tracer-free water within several
months. The cross-streak dimension of 3 (2–5) km
was interpreted as being set by a balance between the
mesoscale rate of strain tending to compress the cross-
streak dimension and a smaller scale isopycnal dis-
persion tending to increase the streak width. Ledwell
et al. estimate a dispersion coefficient of D6 months ù
2 m2 s21(0.6–6.0 m2 s21).

The tracer release was preceded by a fine- and mi-
crostructure survey. A decomposition of the finescale
velocity and density fluctuations into internal waves and
vorticity-carrying perturbations, called vortical modes
(Polzin et al. 2003), quantifies the nonpropagating vor-
tical field that can support persistent relative motion in
a Lagrangian framework. Having only a spectral de-

scription of vortical modes, we used a second moment
(spectral) scheme to estimate the dispersive properties
of the vortical field. We found that

• an initial spot release of radius 25 m would be teased
into filaments that fold back upon themselves to create
a convoluted web of tracer with radius 2–4 km after
two weeks and

• after 5–10 days stirring, in the vortical field can be
described as a dispersion coefficient D 5 0.5–2.5 m2

s21.

We further note the following: 1) at two weeks, in-
dividual tracer streaks are separated by a length that is
approximately 2p times the energy-containing scale in
the vortical field and 2) there are many points of un-
certainty in the analysis. The most problematic of these
is the assumption of balanced vortical motions.

Vortical mode dispersion is not the only process that
could be capable of producing enhanced diffusivities.
Dispersion can arise as a second-order effect in a ran-
dom internal wavefield (e.g., Sanderson and Okubo
1988; Weichman and Glazman 2000; Ferrari 2003, un-
published manuscript), but this process is very ineffi-
cient, achieving diffusivities of at most 0.01 m2 s21 for
the background internal wave spectrum. Haynes and
Anglade (1997) and Haynes (2001) suggest that vertical
shear in the mesoscale eddy field coupled to vertical
diffusion (shear dispersion) could be associated with
O(1 m2 s21) dispersion coefficients. Our primary mis-
giving of such a mechanism is that, acting in isolation
of a small-scale stirring process, it would not be able
to create the rich finestructure evident in the tracer dis-
tribution at two weeks.

Our assessment is that vortical modes can explain
both the O(1 m2 s21) dispersion coefficients estimated
from the dispersion of an anthropogenic tracer during
NATRE and the convoluted structure observed subse-
quent to its release. Mesoscale eddies cannot accomplish
the later. Clearly, a combination of numerical simula-
tions and more information on the spatial/temporal evo-
lution of vortical modes is called for.
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