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ABSTRACT

Observations and inverse models suggest that small-scale turbulent mixing is enhanced in the Southern

Ocean in regions above rough topography. The enhancement extends O(1) km above the topography, sug-

gesting that mixing is supported by the breaking of gravity waves radiated from the ocean bottom. In this

study, it is shown that the observed mixing rates can be sustained by internal waves generated by geostrophic

motions flowing over bottom topography. Weakly nonlinear theory is used to describe the internal wave

generation and the feedback of the waves on the zonally averaged flow. Vigorous inertial oscillations are

driven at the ocean bottom by waves generated at steep topography. The wave radiation and dissipation at

equilibrium is therefore the result of both geostrophic flow and inertial oscillations differing substantially

from the classical lee-wave problem. The theoretical predictions are tested versus two-dimensional high-

resolution numerical simulations with parameters representative of Drake Passage. This work suggests that

mixing in Drake Passage can be supported by geostrophic motions impinging on rough topography rather

than by barotropic tidal motions, as is commonly assumed.

1. Introduction

Turbulent mixing plays an important role in the circu-

lation of the Southern Ocean (SO). Observations of ve-

locity and density fluctuations show that mixing is strongly

enhanced above rough bottom topography (Naveira

Garabato et al. 2004). Inverse calculations (Ganachaud

and Wunsch 2000; Sloyan and Rintoul 2001) find that

this vigorous turbulent mixing contributes crucially to

the downward buoyancy flux that maintains the abyssal

ocean stratification and to the upward transport of the

waters that close the ocean’s meridional overturning cir-

culation. It is an open question as to what physics drives

the enhanced mixing.

Polzin et al. (1995) show that turbulent mixing in the

ocean interior away from the surface and bottom bound-

ary layers is typically associated with breaking internal

waves. In particular, they show that the intensity of tur-

bulent fluctuations is well correlated with the local in-

ternal wave activity. Gregg (1989) uses the correlation

to parameterize the levels of turbulent mixing in terms

of the background oceanic internal wave spectrum de-

scribed by the Garrett–Munk (GM) empirical formula

(Munk 1981). Parameterizations based on the GM in-

ternal wave spectral level have remarkable skill in pre-

dicting the background turbulent mixing found in most

of the ocean, but they fail to characterize regions of

enhanced mixing. The diapycnal mixing inferred by

Naveira Garabato et al. (2004) above rough topography

in the SO exceeds background values by one–three or-

ders of magnitude. The vertically integrated dissipation

rate averaged for a section across Drake Passage is of

the order of 10 mW m22 corresponding to a bottom

diapycnal diffusivity of 1022 m2 s21, as opposed to

background values of 1025 m2 s21 found in the ocean

thermocline. Note that the relationship between in-

ternal wave activity and mixing holds. The enhancement

is associated with an increased internal wave activity

over the GM background value. Kunze et al. (2006),

using a similar finescale parameterization, also find en-

hanced mixing in regions with rough topography and

strong bottom flows; however, their values of energy
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dissipation rate in the Southern Ocean are somewhat

lower.

The enhancement of turbulent mixing above rough

topography has been linked to the generation of internal

waves by flows impinging on topography (Polzin et al.

1997). The generation of this wave activity would add to

the background wave field and explain the enhancement

of internal wave energy and associated mixing, but the

question of what motions drive the bulk of the internal

wave radiation remains unanswered. Nowlin et al. (1986)

show, based on moored observations in Drake Passage,

that the kinetic energy in the abyss is partitioned among

geostrophic flows, inertial oscillations (IOs), tides, and the

internal wave continuum. Any one of these motions can

generate internal waves through interaction with bot-

tom topography; however, most of the recent theoretical

work has focused on barotropic tides (e.g., Garrett and

St. Laurent 2002; Garrett and Kunze 2007). Internal

wave generation by the dominant M2 tide component is

estimated globally by Nycander (2005) using the linear

theory of internal wave generation developed by Bell

(1975a,b) and modified by Llewellyn Smith and Young

(2002) to account for the finite ocean depth. Using this

estimate, we find that the energy flux radiated by in-

ternal waves from topography deeper than 2 km in the

Drake Passage region is at most 1–2 mW m22. In the

region of the mid-Atlantic Ridge tidal flows have been

shown to radiate mostly at low vertical modes and only

a small fraction, less than 30%, goes into high modes that

can dissipate locally (St. Laurent and Garrett 2002). Low

modes, accounting for the bulk of energy radiation, can

either be influenced by topography and scatter their en-

ergy to higher wavenumbers that dissipate locally or ra-

diate away and contribute to mixing in remote locations

(St. Laurent and Garrett 2002). Even if all radiated en-

ergy dissipated locally, tidal flows in Drake Passage can

account for no more than 10%–20% of the observed

dissipation rates.

Bottom geostrophic flows are much more intense in

the SO than in most other ocean basins, possibly as a

result of the nonlinear barotropization of the geostrophic

eddy field. Naveira Garabato et al. (2004) have suggested

that the generation of quasi-steady lee waves by geo-

strophic flows is an alternative explanation for the en-

hanced wave activity in the Drake Passage region. This

route is explored here with emphasis on the amount of

diabatic mixing that can be supported by internal wave

radiation.

The main result of this paper, supported by both

idealized simulations and linear theory, is that internal

waves generated by geostrophic flows can support en-

hanced abyssal mixing. To relate this work to observa-

tions in the SO, parameters characteristic of flows and

topography in Drake Passage are chosen. However, the

approach is highly idealized and is used to explain qual-

itative aspects of the radiation and dissipation problem

only. A quantitative comparison using more realistic

model configurations is the focus of a companion paper

(Nikurashin and Ferrari 2010, hereafter NF) where we

show, using multibeam topography, velocity, and strat-

ification data available for the SO, that the parameter

space described here is relevant to the SO. The amount

of energy dissipation diagnosed from the idealized sim-

ulations is of the same order of magnitude as dissipation

inferred from observations and strongly suggests that the

geostrophic flow–topography interaction is an important

process for abyssal mixing in the SO.

This paper is organized as follows: in section 2, the

linear theory for topographic internal wave generation is

reviewed and the nondimensional parameters that char-

acterize the properties of internal wave generation in the

ocean are introduced; in section 3, the theory for the gen-

eration of internal waves by a geostrophic flow is pre-

sented, with a major focus on the analysis of the feedback

that drives IOs and leads to wave breaking and mix-

ing; in section 4, the setup of the numerical experiment

used to test the theory is described; in section 5, the nu-

merical simulations are analyzed and compared to linear

theory predictions; and in section 6, the conclusions are

presented.

2. Topographic wave theory

The goal of this study is to describe the generation of

internal waves by geostrophic flows over topography in

the abyssal ocean. The problem configuration is very

idealized and limited to 2D to focus on the essential

physics. [Nikurashin (2009) shows that our results apply

to 3D as well.] The numerical simulations described in

this study show that the radiation and breaking of in-

ternal waves trigger vigorous IOs at the ocean bottom.

The development of IOs makes the problem time de-

pendent, unlike the classical steady lee-wave problem.

More importantly, vertical shear associated with IOs

promotes enhanced internal wave breaking and dissi-

pation. In this section, we start by reviewing the theory

of topographic wave generation by both steady and os-

cillatory flows and the resulting feedback on the large-

scale flow. Then, we go through a systematic analysis of

the physics that triggers IOs and show that they are an

inevitable consequence of the interaction between geo-

strophic flows and topography. A reader interested pri-

marily in the analysis of the numerical simulations and

their implications for turbulent mixing can skip to sec-

tion 4.
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a. Generation of waves by topography

In the classical lee-wave problem (Long 1953; Bretherton

1969a; Gill 1982), a constant flow in a stratified fluid over

a variable bottom topography generates steady, upward

radiating internal waves. The essential physics is cap-

tured by a 2D, horizontally periodic, and vertically un-

bounded domain with a sinusoidal bottom topography

given by h(x) 5 h0 coskx. For small amplitude waves

and a uniform mean flow U0 and stratification N, the

linearized Navier-Stokes equations are

U
0
u

x
1 f ẑ 3 u 5�$p 1 bẑ,

U
0
b

x
1 N2w 5 0,

$ � u 5 0,

wj
z50

5 U
0
h

x
,

where u 5 (u, v, w), b, and p are the wave velocity,

buoyancy, and pressure fields, respectively, f is the

Coriolis frequency, and $ 5 (›x, ›z). If U0 is constant,

then solutions to the linear problem are in the form of

monochromatic, stationary lee waves with horizontal

wavenumber k and vertical wavenumber m,

m 5 k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 �U2

0k2

U2
0k2 � f 2

s
. (1)

Lee waves can radiate upward only if f , U0k , N and

m is real. If k is in the radiative range, lee waves trans-

port energy and momentum upward at the following

rates (Eliassen and Palm 1961; Bretherton 1969b):

pwx 5
1

2
r

0
U3

0h2
0km 1� f 2

U2
0k2

 !
. 0,

uwx 5�1

2
r

0
U2

0h2
0km , 0, (2)

which are independent of height [(�)x
denotes a spatial

average over one topographic wavelength]. A momen-

tum flux divergence appears only if the waves break and

deposit their negative momentum. In a nonrotating ref-

erence frame, the resulting momentum deposition acts

to slow down the mean flow and reduce the mean kinetic

energy (MKE). In a rotating reference frame, the force

generated by the deposition of wave momentum slows

down the mean flow and triggers near-inertial oscilla-

tions and higher-frequency internal waves, much like

wind stress does at the ocean surface (Vadas and Fritts

2001; Lott 2003).

If the mean flow oscillates at a frequency v0, waves are

radiated from the topography both at the fundamental

frequency v0 and all its superharmonics (Bell 1975a,b)

generating time-mean energy and momentum fluxes:

pwx,t 5
1

2
r

0
h2

0k�2 �
‘

n5�‘
v

n
m

n
(v2

n � f 2)J2
n

U
0
k

v
0

� �
,

uwx,t 5 0, (3)

where vn 5 nv0 is the nth harmonic of v0, m
n

5 k(N2 �
v2

n)1/2(v2
n � f 2)1/2 is its vertical wavenumber, and Jn is

the nth Bessel function of the first kind. The operator

(�)x,t
denotes a time average over one period of the mean

flow, in addition to the spatial average over one topo-

graphic wavelength. The mean vertical momentum flux

is zero because waves transport an equal amount of

vertical momentum both upward and downward during

one period of the oscillations.

If water parcels travel a short distance over the topo-

graphic bump during one period of oscillation U0k/v0� 1,

the wave energy and momentum are radiated mostly

at the fundamental frequency. However, for large U0k/v0,

the particle excursion becomes greater than the scale of

topography and internal waves are generated in a form

of quasi-steady lee waves, which are reinforced at suc-

cessive cycles by the harmonics of the fundamental fre-

quency, making the wave field multichromatic (Bell 1975a;

Garrett and Kunze 2007).

Although the steady component of the momen-

tum flux associated with oscillatory flows is zero, it

has time-dependent components uwx 5 uwxj
v56v0

1

uwxjv562v0
1 � � � , where the terms on the right-hand side

are the flux components oscillating at harmonics of v0.

When time-dependent waves break and deposit their

momentum, they can result in a time-dependent forcing

on the zonally averaged flow.

In the SO, abyssal flows are dominated by geostrophic

flows, inertial oscillations, and tides (Nowlin et al. 1986).

All these motions can radiate internal waves through

interaction with bottom topography. Whereas geostrophic

flows can be regarded as quasi-steady on the internal wave

time scale, inertial oscillations and tides are oscillatory

flows. Combining the results for wave radiation by steady

and oscillatory flows, the total internal wave momentum

flux can be written as a superposition of steady, inertial f,

and tidal vT, waves, their higher harmonics and their lin-

ear combinations, so that

uwx 5 uwxj
v50

1 uwxj
v56 f

1 uwxj
v56v

T
1 � � � . (4)

The steady component of the momentum flux de-

scribes the time-mean internal wave radiation. The time-

dependent momentum-flux components force a fast time

response in the large-scale flow at their corresponding

frequencies. The components at a frequency other than
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f have little effect on the evolution of the mean flow at

subinertial time scales. The momentum flux component

oscillating at frequency 6f is different, because f is the

natural oscillation frequency in the rotating system and

a forcing at f can drive a resonant response. This reso-

nance is crucial because it modifies the subsequent wave

generation and breaking. This will be explored in detail

in section 3.

b. The fundamental nondimensional parameters

A formal derivation of internal wave generation by

a mean flow and the associated inertial response are the

topic of section 3. Here, we introduce the nondimensional

parameters that characterize the problem. Let us con-

sider the situation sketched in Fig. 1. A zonal flow, com-

posed of the superposition of a steady geostrophic flow of

amplitude UG and an oscillatory flow of frequency f and

amplitude UI, impinges on a sinusoidal topography of am-

plitude hT and wavenumber kT. The geostrophic and in-

ertial flows are depth independent, while initially density

has a constant stratification N. These parameters can be

collapsed into four nondimensional numbers character-

izing the different dynamical regimes that can develop in

the problem.

The first two nondimensional numbers determine

whether the topographic waves can radiate or remain

trapped above topography. Geostrophic flows can ra-

diate stationary lee waves flowing over topographic

features with scales between UG/f and UG/N [see Eq.

(1)]. Hence, wave radiation is possible only if the non-

dimensional parameter x 5 UGkT/N, the ratio of the

intrinsic lee-wave frequency and buoyancy frequency,

lies in the range f/N , x , 1, where the Prandtl ratio f/N

is the second nondimensional parameter.

The third and dynamically most significant nondimen-

sional number is the steepness parameter that controls

the degree of nonlinearity of the waves. It is defined as the

ratio of the topographic slope kThT to the slope of the

internal wave phase lines kT/m, where m is the vertical

wavenumber of the waves,

�5 mh
T

’
Nh

T

U
G

, (5)

where m ’ N/UG for radiating lee waves such that f/N�
x� 1 [see Eq. (1)]. The time dependence in the bottom

velocity results in the generation of waves with different

vertical structure and breaks this simple relationship.

However, in our problem, the time-dependent compo-

nent of the flow UI is generated by UG and hence (5)

remains a useful parameter to characterize different

dynamical regimes. The steepness parameter � is used to

distinguish different topography regimes: subcritical �� 1,

critical � ; 1, and supercritical �� 1. In the subcritical

regime, the waves are essentially linear. In the critical

and supercritical regimes, nonlinearity becomes impor-

tant and results in a low-level wave breaking and flow-

blocking effects.

The frequency of the waves radiated by a time-

dependent flow is controlled by the fourth nondimen-

sional number, the excursion parameter b 5 UIkT/f. This

number compares the amplitude of a particle excursion

during one oscillation UIf 21 to the horizontal scale of

the topographic bumps k�1
T . For b� 1, the particle ex-

cursion is less than the scale of topography and the

waves radiate mainly at the fundamental frequency f,

Doppler shifted by UGkT. For b ; 1, the particle ex-

cursion is comparable with the scale of topography and

superharmonics of the fundamental frequency are ra-

diated making the wave field multichromatic. For b� 1,

one recovers the quasi-steady lee-wave regime.

It is useful to estimate the nondimensional numbers

for the flows observed in the Drake Passage region, used

here as a prototype situation for the idealized problem.

A more thorough comparison is given in a companion

paper (NF). The lowered acoustic Doppler current

profiler (LADCP) and CTD data (Naveira Garabato

et al. 2002, 2003) show that in the core of the Antarctic

Circumpolar Current (ACC) geostrophic eddy velocities

at the bottom are typically UG ; 0.1 m s21, the stratifi-

cation is N ; 1023 s21, and the Coriolis frequency is f ’

1024 s21. Linear wave theory (Bell 1975a,b) suggests that

for these parameters the lee-wave energy flux is largest

for topographic wavenumbers close to kT ’ 2p/2 km21.

Multibeam data collected by the British Antarctic Survey

FIG. 1. Definition sketch illustrating the interaction of a geo-

strophic flow UG and an IO (UI, f ) with periodic bottom topography

(kT, hT) in stably stratified fluid. Dashed gray lines are the phase

lines of the waves and the dashed black line is the trajectory of

a particle, illustrating its excursion during one period of oscillation.
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for Drake Passage show that the typical height of to-

pographic hills at these scales is close to hT 5 60 m; with

these values we have x ’ 0.3, f/N ’ 0.1, and �’ 0.6. Both

numerical simulations and theory described below sug-

gest that IOs reach the same amplitude as the mean

geostrophic flow UI ’ UG 5 0.1 m s21, corresponding

to b ’ 3. With these parameters, radiation of internal

waves is close to critical and advective effects are large

enough to generate harmonics beyond the fundamental

frequency f. This is confirmed in the more extensive

analysis of multichromatic topography and realistic mean

flows presented in NF. Here, the parameters are given to

orient the reader with what a regime characteristic of the

Drake Passage region is; however, we will study radiation

for a wide range of �, f/N, and b.

A number of analytical models of topographic in-

ternal wave generation have been developed for both

internal tides and lee waves. Ocean models have been

mostly used to predict the conversion of energy from

barotropic into internal tides, whereas the atmospheric

literature focused on the steady lee-wave problem. The

linear approach for the ocean was developed by Bell

(1975a,b), who considered a barotropic current flowing

over topography in a vertically unbounded ocean with

uniform stratification. He restricted the analysis to small

topographic slopes (� � 1) so that topography was sub-

critical everywhere and the bottom boundary condition

could be linearized. With this simplification, solutions were

found for arbitrary topography.

Bell’s assumption of infinite depth has been the focus

of recent work on tidal generation (e.g., Llewellyn Smith

and Young 2002), but it is not a major issue for internal

waves generated by geostrophic flow and inertial oscil-

lation. Unlike internal tides, these waves are radiated

with vertical scales much shorter than the ocean depth,

and their generation is not directly affected by the sur-

face boundary condition. The assumption of subcritical

topography is more questionable because internal waves

are generated by small-scale topographic features, which

can be quite steep. We will therefore compare the results

of linear theory, valid for small �, with numerical simu-

lations in the finite � limit. Finally, we follow Bell’s ap-

proach and make no assumption of small b [as generally

done in recent tidal studies, e.g., Llewellyn Smith and

Young (2002) and Balmforth et al. (2002)] because IOs

can be as large as the geostrophic flow—that is, b 5 O(1).

3. Multiscale analysis of topographic wave–mean
flow interaction

The goal of this section is to derive a set of equations

to study the feedback of topographic waves on the flow

that generated them. To make analytical progress, we

make a judicious choice of scales that allows a clean

separation between the equations that describe the wave

generation by the large-scale flow and those for the

feedback on the large-scale flow. The assumed scale

separations are only marginally realized in the real

ocean and in the numerical simulations described in this

study; however, the goal here is to unfold the underlying

physics, not necessarily to make accurate quantitative

predictions. We idealize the ocean as a Boussinesq, ro-

tating, and stably stratified fluid governed by

u
t
1 (u � $

H
)u 1 wu

z
1 f ẑ 3 u 5�$

H
p 1D

m
(u), (6)

w
t
1 (u � $

H
)w 1 ww

z
5�p

z
1 b 1D

m
(w),

(7)

b
t
1 (u � $

H
)b 1 wb

z
1 wN2 5D

b
(b), and (8)

$
H
� u 1 w

z
5 0, (9)

where u 5 (u, v) and w are, respectively, the horizontal

and vertical velocities, p is pressure, b 5 2g(r 2 r0)/r0 is

buoyancy, f is the Coriolis frequency, N is the buoyancy

frequency, and r0 is a reference density. Dissipation of

buoyancy and momentum, D
m

and D
b
, are assumed to

be linear operators as described later.

The flow is assumed to be periodic in the horizontal.

Top and bottom boundary conditions are of zero ve-

locity normal to topography and vanishing vertical ve-

locity as z / ‘,

wj
z5h(x)

5 u � $
H

h(x) and wj
z!‘

5 0. (10)

First, we nondimensionalize both the governing equa-

tions and the boundary conditions, and then we expand

the solution in the small steepness parameter �5 NhT /UG.

The steepness parameter characterizes the nonlinearity

in the bottom boundary condition. We assume that the

nonlinearity in the momentum equation is of O(�), con-

sistent with lee-wave scaling (see appendix A). At leading

order, the flow u(0) is composed of a geostrophic com-

ponent uG and an IO uI 5 UI(cosf(t 2 t0), 2sinf(t 2 t0)),

where UI and ft0 are the amplitude and phase of IO,

respectively. The radiating waves are assumed to be of

small amplitude u(1). The full expansion of the velocity

field takes the form

u 5 uG 1 uI 1 �u(1) 1 �2u(2) 1 �3u(3) 1 � � � , (11)

and scales are expanded as t / t 1 �21T (1) 1 � � � and x /
x 1 �21X(1) 1 � � � , where (t, x) are the scales of the waves

and [T (n), X(n)] are slower scales of the problem. We

assume that the geostrophic flow varies on slow sub-

inertial scales uG 5 uG[T (4), X(4)] so that the evolution of
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uG enters at higher orders than any of the dynamics

described here. This is tantamount to assuming that the

Rossby number associated with uG is O(�4). The am-

plitude of the IO also varies on slow scales UI 5 UI[T
(3),

X (4), Y (4), Z(1)], that is, we assume that the IO varies on

the same scale as uG in the horizontal, but has a smaller

vertical scale; the numerical simulations described in

this study confirm that UI varies in the vertical on scales

of O(1) km, smaller than the vertical scale of geostrophic

eddies, which is of O(3–4) km in the abyss. The time

scale of the evolution of UI is set by the dynamics, where

UI is forced by the vertical divergence on scale Z(1) of the

wave momentum flux divergence ›Z(1) u(1)w(1) 5 O(�3).

Once these judicious choices are made for the leading-

order flow, the dynamical equations determine the evo-

lution of the problem.

At leading-order O(�0), we obtain a set of equations

describing both the geostrophic flow

f ẑ 3 uG 5�$X(4) pG,

0 5�pG
Z(4) 1 bG,

wG 5 0 (12)

and the IO

uI
t 1 f ẑ 3 uI 5 0, wI 5 0. (13)

Dissipation on the large scale of the leading-order flow is

assumed to be weak and does not appear at this order.

This corresponds to expanding in a small damping pa-

rameter (see appendix A).

At the order O(�1), we get the set of equations and

boundary conditions governing the evolution of internal

waves generated by the leading-order motions inter-

acting with topography:

u
(1)
t 1 u(0) � $

x
u(1) 1 f ẑ 3 u(1) 5�$

x
p(1) 1D(1)

m [u(1)],

(14)

0 5�p(1)
z 1 b(1), (15)

b
(1)
t 1 u(0) � $

x
b(1) 1 N2w(1) 5D(1)

b [b(1)], (16)

$x � u
(1) 1 w(1)

z 5 0, and (17)

w(1)j
z50

5 u(0) � $xh, w(1)j
z!‘

5 0. (18)

The O(�2) equations (see appendix A) describe O(�2)

internal waves generated by the lower-order motions

flowing over topography, as well as by direct forcing

from O(�1) internal waves through nonlinear terms.

These waves do not drive any flux averaged over large

scales and hence do not feedback on the mean flow. The

wave–mean flow interaction appears at O(�3).

The coarse-grained averaged momentum equation at

O(�3) is

u
(3)
t 1 f ẑ 3 u(3) 5�uI

T(3) � ›
Z(1) u(1)w(1) 1D(3)

m [u(3)],

(19)

where the overbar is an average over small spatial scales

x. At this order, there is a fast time evolution of the O(�3)

IO combined with a slow time evolution of the leading-

order IO uI. The IOs are forced by the O(�3) internal

wave momentum flux divergence. The evolution of the

geostrophic flow occurs on a slower subinertial time

scale T (4)� T (3).

a. O(�1) solution: Wave generation

In this section, we solve for the generation of O(�1)

internal waves in 2D for a monochromatic bottom to-

pography h(x) 5 hT cos(kTx). The leading-order flow,

which is governed by Eqs. (12) and (13), can be written as

u(0)(t) 5 U
G

1 U
1

cos f (t � t
0
),

y(0)(t) 5�U
1

sinf (t � t
0
), (20)

where UG is a zonal geostrophic flow varying on the slow

variables [T (4), X(4)], and UI and ft0 are the amplitude

and phase of IO, respectively, varying on the slow var-

iables [T (3), X (4), Y (4), Z(1)].

To make analytical progress we represent dissipation

as a linear damping,

D(n)
m (u(n)) 5�lu(n),

D
(n)
b (b(n)) 5�lb(n), (21)

where l is the dissipation rate. The dissipation of mo-

mentum and buoyancy is retained here, unlike in Bell

(1975a,b), to represent in a crude way the effect of small-

scale turbulence that damps radiating linear waves.

Analytical solutions to (14)–(18) are found by switch-

ing to a reference frame moving with the zonally aver-

aged flow, j 5 x�
Ð t

t0
u(0)(t9) dt9. The problem can be

reduced to a single equation for the vertical velocity w(1):

(›
tt

1 2l›
t
1 l2)w(1)

zz 1 N2w
(1)
jj 1 f 2w(1)

zz 5 0, (22)

w(1)j
z50

5 u(0)h
j
. (23)

Solutions matching a periodic topography are found by

expanding variables into Fourier modes in the j-coordinate

frame. The solution to (22) that satisfies the boundary

condition (23) is
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w(1)(t, j, z) 5�h
T

�
‘

n5�‘
s

n
J

n
(b)Im(eiu

n ),

u
n

5 k
T

j 1 m
n
z 1 s

n
(t � t

0
), (24)

where sn 5 nf 1 UGkT is the intrinsic frequency of the

nth harmonic of the inertial frequency Doppler shifted

by UG; mn is a complex number with the real and

imaginary parts representing, respectively, the wave

vertical wavenumber and an inverse decay scale result-

ing from damping,

m2
n 5 k2

T

N2

(s
n
� il)2 � f 2

; (25)

b is the excursion parameter, and Jn(b) are Bessel func-

tions of the first kind. For finite b, all harmonics n have

comparable magnitude (only at small b most of the

energy is in the fundamental frequency f). The fact that

the internal wave field is a superposition of inertial fre-

quency harmonics has important implications for the

wave–mean flow feedback mechanism discussed in the

next section.

All other dynamical variables can be reconstructed

from w(1). The rate of the bottom energy conversion

from the geostrophic flow and the IO averaged zonally

and over an inertial period can be written as

p(1)w(1) 5
1

2
�
‘

n5�‘
h2

Ts3
nk�1

T J2
n(b)Re

m
n

k
T

(s
n
� il)2 � f 2

s
n
(s

n
� il)

" #
.

(26)

This expression reduces to the lee-wave expression in

the limit of b 5 0 (no inertial oscillation in the leading-

order flow) and to the expression for internal tide con-

version, if the tidal frequency is used instead of the inertial

frequency (Bell 1975a,b).

b. O(�3) solution: Feedback of waves on
the large-scale flow

We now consider the feedback of internal waves on

the leading order flow. Averaging the O(�3) equations

over the short wave scales gave us (19), which describes

the slow time evolution of the O(�0) IO, driven by the

divergence of momentum fluxes associated with O(�1)

waves. Introducing the complex velocity V 5 u 1 iy, and

representing a linear damping operator as already done

for D(1), Eq. (19) becomes

V(3)
t 1 ifV(3) 5�VI

T(3) � ›
Z(1)V(1)w(1) � lV(3), (27)

where VI
T(3) is the evolution of the leading-order IO on

the slow time scale T (3), and ›
Z(1)V(1)w(1) is the divergence

of the internal wave momentum flux. Although this

equation is valid at any vertical level, in this section we

focus on the feedback at z 5 0, where the leading-order

flow and the O(�1) internal waves are coupled through

the bottom boundary condition.

First, we want to illustrate the instability that gener-

ates the IOs. To do so, we assume that the amplitude of

the IO is much smaller than the geostrophic flow at t 5 t0
(even though it is still of leading order)—that is, UI �
UG. This implies b 5 UIkT/f � 1, but also UGkT/f . 1, to

be in the radiative range. The O(�1) vertical velocity (24)

in the small b limit takes the following form:

w(1) 5�h
T

s
0
Im(eiu0 ) 7

1

2
bh

T
s

61
Im(eiu

61 ) 1 O(b2).

u
n

5 k
T

j 1 m
n
z 1 s

n
(t � t

0
). (28)

The first term represents a wave generated by the geo-

strophic flow with intrinsic frequency s0 5 UGkT in the

moving reference frame; this reduces to a lee wave in

the absence of an IO. The second term is generated by

the IO, and it is the superposition of two waves with

intrinsic frequencies s61 5 6f 1 UGkT. The amplitude

of the primary wave is proportional to UG and much

larger than the amplitudes of the oscillatory waves, which

are proportional to UI.

The small-b expression for the wave momentum flux

divergence at z 5 0 is computed from w(1) and the cor-

responding expression for V(1)

›
Z(1)V(1)w(1) 5 A� b[Be�if (t�t0) 1 Ceif (t�t0)] 1 O(b2),

(29)

where A, B, and C are constants that depend on external

parameters of the problem, as shown in appendix B.

Apart from a dependence on fixed external parameters,

the wave flux divergence is proportional to the slowly

varying amplitude UI, through b, and the phase t0 of the

IO. In the absence of an IO, ›Z(1)V(1)w(1) is constant and

no instability can develop. The presence of an IO in the

bottom flow forces a component of ›Z(1)V(1)w(1) oscil-

lating at f, which drives a resonant response. This flux is

formed by the product of the wave with s0 5 UGkT and

each of the two oscillatory waves with s61 5 6f 1

UGkT.

Substituting the expression for the momentum flux

divergence (29) into (27) we have

V(3)
t 1 ifV(3) 5�A� ( _U

I
1 ifU

I
_t
0
�U

I
k

T
f�1B)e�if (t�t0)

1 U
I
k

T
f�1Ceif (t�t0) � lV(3),

(30)
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where VI 5 U
I
e�if (t�t0). The solvability condition for

the evolution of UI and t0 on the slow time scale T (3) is

obtained by setting the secular terms to zero. The solu-

tions to the problem are

U
I
(T(3)) 5 U

I
(0)ek

T
f�1Re(B)T(3)

and

t
0
(T(3)) 5 k

T
f�2Im(B)T(3); (31)

that is, UI grows exponentially on the slow time scale

T (3) as long as G 5 kTRe(B)/f . 0.

In the limit of hydrostatic (UGkT� N), superinertial

(UGkT � f ), and weakly damped (UGkT � l) waves,

the expression for the growth rate of the inertial flow

becomes

G ’ 1

2
l�2 1 1 4

f 2

U2
Gk2

T

� 3
l2

U2
Gk2

T

 !
. (32)

This expression illustrates the fundamental physics at

play. The instability develops only in the presence of

damping l, otherwise the waves cannot deposit momen-

tum and feedback on the large-scale flow, a limit known

as the nonacceleration conditions in the atmospheric lit-

erature (Eliassen and Palm 1961; Andrews and McIntyre

1976). Furthermore, the instability is proportional to �2,

that is, it is more rapid for larger-amplitude topography

(implying large-amplitude waves). When the damping

exceeds a critical value greater than 2/3(1/2)f, the instability

is suppressed.

The vanishing of the instability for l 5 0 deserves more

explanation. For l 5 0, the amplitude of the wave mo-

mentum flux is vertically uniform. The momentum flux

and its vertical divergence are in quadrature with the IO at

every level, and their net work over a period is zero. When

l . 0, the amplitude of the wave momentum fluxes decays

with height, resulting in wave momentum deposition and

a phase shift between the IO and the wave momentum

flux divergence. When slightly out of phase, the wave

momentum fluxes work to accelerate the IO. For large l,

the phase shift becomes so large that wave momentum

deposition can start to work against IOs.

The multiscale expansion also predicts the saturation

of the instability. While at small b, the magnitude of the

wave momentum fluxes increases linearly with b, caus-

ing exponential growth of UI; at finite b, it is propor-

tional to Jn(b) (see appendix B) and can decrease with b.

At a certain finite value of b when the magnitude of the

resonant flux component vanishes, the instability is

suppressed. The saturation of the instability at finite b is

demonstrated in section 5, using the full expression for

the wave momentum fluxes derived in appendix B in

comparison with results from the numerical simulations.

4. Numerical model setup

We use the Massachusetts Institute of Technology gen-

eral circulation model (MITgcm), which solves the

nonhydrostatic, nonlinear primitive equations using a

finite-volume formulation (Marshall et al. 1997). By run-

ning the model in the nonhydrostatic form, hydraulic

jumps and Kelvin–Helmholtz instabilities, which develop

in our problem, are explicitly resolved without the

need for parameterizations. The MITgcm has been

used for studies of wave radiation and breaking before

(e.g., Khatiwala 2003; Legg and Huijts 2006).

The domain used in the simulations is 2D, horizontally

periodic with a uniform resolution of Dx 5 12.5 m in the

horizontal and variable resolution in the vertical. The

vertical grid spacing is set to Dz 5 5 m in the bottom

2 km, and it is gradually stretched to Dz 5 300 m in the

region above. The domain size is L 3 H 5 2 km 3 7 km.

To absorb upward-propagating internal waves, a sponge

layer is applied between 2 km above the topography and

the top boundary, where buoyancy and momentum are

damped with a time scale of 4 h. A uniform stratification

of N 5 1023 s21 and a Coriolis frequency of f 5 1024 s21

are used. Horizontal and vertical viscosity and diffusiv-

ity are set to 1022 m2 s21 and 1023 m2 s21 respectively;

experiments with higher resolution and lower values of

viscosity and diffusivity, 1023 m2 s21 and 1024 m2 s21,

respectively, show quantitatively similar results.

Bottom topography has the form h(x) 5 hT coskTx

with a wavenumber kT 5 2p/2 km21 and an amplitude

hT varying from 10 to 80 m. A depth-independent mean

geostrophic flow UG 5 0.1 m s21 is forced by adding

a body force fUG to the meridional momentum equa-

tion. This body force maintains a zonal vertically uni-

form flow in geostrophic balance and is analogous to

a tilt of the thermocline in a two-layer model. Here, free-

slip bottom boundary conditions are imposed. Other

boundary conditions are considered in section 5c.

All experiments are initiated from a state of rest.

Then, the velocity and temperature fields are slowly

relaxed to the desired basic state for a 24-h time period,

with a relaxation time scale of 3 h. A gradual increase of

the flow to the basic-state value is necessary to let the

flow adjust to the bottom topography and avoid spurious

initial transient effects. After the first day, the relaxation

term is removed and the system is integrated for nine

more days; at longer times one should include the evo-

lution of the geostrophic flow.

5. Analysis of numerical simulations

In this section, we use the theory described above to

interpret the results of the numerical simulations. We

decompose the model solution into a zonally averaged
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flow and deviations from the zonally averaged flow (the

waves). First, we discuss the evolution of the zonally

averaged flow and demonstrate that the growth of IOs in

the simulations is consistent with the resonant feedback

mechanism described in section 3. Next, we compare the

internal wave fluxes from simulations with the theoret-

ical predictions. Finally, we discuss the energy budget of

wave radiation, breaking, and dissipation, and show the

relevance of our results for turbulent dissipation esti-

mates in the real ocean.

a. IOs

The time evolution of the zonally averaged flow from

a simulation with � 5 NhT/UG 5 0.4 is shown in Fig. 2.

The problem becomes time dependent at � 5 0.4, and

this simulation displays the essential physics of interest

without the additional complications that arise at large

�, described later in the study. No IO is imposed in the

initial conditions; however, within the first 48 h a strong

oscillatory flow with frequency f develops and saturates

once it reaches the same amplitude of the prescribed

geostrophic flow of 0.1 m s21. The IOs extend through-

out the whole domain, but they are particularly intense

within 700 m of the bottom.

The growth of the IO amplitude at z 5 100 m, slightly

above the topography, is shown in Fig. 3 for the whole set

of simulations with different �: the growth rate increases

with �. For �# 0.3, the growth rate is very slow and the IO

amplitude has not reached equilibrium after 10 days of

simulation. Simulations with �. 0.3 have fully developed

IOs with an amplitude of about 0.12 6 0.02 m s21—

that is, of the same order as the geostrophic flow.

Although the vertical scale separation between IOs

and internal waves assumed in the theory is not well

FIG. 2. (top) Time evolution of zonally averaged velocities (m s21) from a simulation with

� 5 0.4. Only a perturbation velocity in addition to an externally prescribed 0.1 m s21 zonal

flow is shown. (bottom) The corresponding zonally averaged meridional velocity component.

FIG. 3. Evolution of the bottom value of the IO amplitude (m s21)

from different simulations with different � values.
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satisfied in the simulations, the characteristics of the IOs

are consistent with the resonant feedback mechanism

described in section 3. Theory predicts that the vertical

structure of the IO is set by the divergence of internal

wave momentum flux oscillating at frequency f, as per Eq.

(27). Consistent with theory, the resonant component of

the wave momentum flux is dominated by harmonics

s21 5 2f 1 UGkT and s0 5 UGkT and it has a vertical

scale of 2p/Re(m21 2 m0) ; 1 km; the phase lines of the

inertial oscillations in (t, z) space have a slope very close

to f/Re(m21 2 m0).

For � . 0.3, waves break above topography and de-

posit most of their momentum before reaching the

sponge layer at 2 km. The IOs are most pronounced in

regions where wave breaking occurs. For the reference

simulation � 5 0.4, the momentum flux decays within

700 m of the bottom. In the theoretical model presented

in section 3, wave breaking was represented as a linear-

damping process. In that model, a damping rate of l 5

5 3 1025 s21 gives u(1)w(1), with a vertical decay scale of

700 m (as estimated from a least squares fit of the model

to the simulation). We discuss what sets this scale below.

In Fig. 4, we show that once l is picked, linear theory

captures both the initial growth rate [through Eq. (32)]

and the level at which IOs saturate [through integration

of Eq. (27)]. Details of the integration of Eq. (27) are

given in appendix B. The comparison between theory

and simulations is shown only for �5 0.4, but the results

are as good for all � values. This good match builds

confidence that the resonant generation is key to the

appearance of IOs.

b. Wave radiation

We now test the prediction of linear theory for the

energy and momentum fluxes radiated by topographic

internal waves. We estimate the energy flux p9w9 and the

momentum flux u9w9 from the model solution using

deviations from the zonally averaged flow and by aver-

aging the fluxes zonally in space and over several inertial

periods in time. These fluxes are the dominant and the

most dynamically significant; all terms of the energy

budget are estimated for the reference simulation and

discussed in section 5c. Figure 5 shows the vertical de-

pendence of the energy flux for various values of �. The

energy flux at the bottom increases with � consistent with

the increase in wave amplitude. The bulk of the energy

flux decays substantially within less than 1 km of the

bottom, as a result of wave breaking and dissipation.

Above the breaking level, there is a small residual en-

ergy flux that radiates into the ocean interior.

Figure 6 shows the comparison of the bottom values of

the energy and momentum fluxes between numerical

simulations and the linear theory prediction. To make

the theoretical prediction, we use the IO amplitude di-

agnosed from the simulations in (26)—that is, we set

UI 5 0.12 m s21. The presence of IOs over bottom to-

pography increases the amount of energy radiated by

internal waves by about 50% compared to the lee-wave

radiation estimate, whereas the wave momentum flux

decreases by about 15%, in agreement with the theo-

retical prediction. However, the importance of IOs is

not that they slightly modify the fluxes, but rather they

promote wave breaking, as we show in section 5d.

The mean energy flux increases in response to the

inclusion of IOs. The energy flux is a positive definite

FIG. 4. Evolution of the bottom value of the IO amplitude nor-

malized by its initial value log [U
I
(t)/U

I
(0)] from the � 5 0.4 sim-

ulation (gray), resonant feedback theory prediction from [(27);

solid black], and linear growth rate prediction [(32); dashed black].

FIG. 5. Profiles of the vertical energy flux (mW m22) from different

simulations with different � values.
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quantity, as all waves radiate away from topography by

construction, and the upward time-dependent compo-

nent associated with the IOs adds to the flux component

driven by the mean flow. The response of the mean

vertical momentum flux to the inclusion of IOs is a bit

more complex. It depends on the partitioning between

the upward and downward components of the momen-

tum flux. In a steady flow problem, the vertical mo-

mentum flux is constant, downward [see Eq. (2)], and it

acts against the steady flow. In an oscillatory flow

problem, the vertical momentum flux is time dependent;

however, waves transport an equal amount of momen-

tum both upward and downward during one period of

oscillation, resulting in a zero time-mean momentum

flux [Eq. (3)]. In a combination of a steady and an os-

cillatory flow, the Doppler shift by the steady flow cre-

ates an asymmetry between the upward and downward

momentum fluxes of the time-dependent waves. It turns

out that the downward mean momentum flux driven by

the steady flow is reduced by the effect of the time-

dependent waves.

The characteristics of the radiated waves change as

a function of � and can be described by three different

regimes. The first regime, at small � (smaller than 0.3 in

our simulations), is characterized by stationary lee-wave

generation. IOs do grow in time as a result of the reso-

nant feedback, but the growth rate is small and, over

a 10-day period, they do not develop enough to signifi-

cantly modify the wave generation process. A second

regime develops for 0.3 , � , 0.7, where inertial fre-

quency harmonics are generated. In this � range, IOs

grow rapidly and reach an amplitude comparable with

that of the geostrophic flow within a few days. These IOs

significantly modify the wave generation process by not

only increasing the amount of radiated energy but also

by making the wave field substantially time dependent

and multichromatic. Linear wave theory, modified to

account for IOs in the leading-order flow, agrees well

with numerical simulations in this � range. The last re-

gime � . 0.7 is characterized by a saturation of the en-

ergy flux that ceases to increase with �. For large

topographic amplitude, the flow in the deep valleys does

not have enough kinetic energy to climb back to the top

of the hills. This pocket of stagnant fluid acts to reduce

the vertical excursion of the fluid flowing over it. As �

increases, the layer of stagnant fluid thickens so that the

layer of fluid flowing over the topography remains con-

stant and the radiated energy saturates.

c. Energy pathways

In the simulations, a substantial fraction of the energy

radiated by gravity waves is dissipated within 1 km of

the bottom topography. This layer is characterized by

vigorous turbulence resulting from the breaking of in-

ternal waves (Fig. 7). To understand the pathways of

energy from the prescribed geostrophic flow to wave

breaking and turbulent dissipation at small scales, we

estimate the mean and wave kinetic energy (EKE)

budgets for the layer 1 km above the bottom. The

analysis is presented for the � 5 0.4 simulation, but the

salient results carry over to larger � simulations.

We decompose the model solution into the mean and

waves as follows:

u 5 U
G

î 1 u 1 u9, (33)

where UG is the prescribed geostrophic flow, u is the

zonally averaged flow, and u9 represents wave perturba-

tions. Generally, u includes both inertial and subinertial

flow components. However, the subinertial component

is weak because no pressure gradient can develop to

balance the zonal subinertial component of u in a two-

dimensional zonally periodic domain.

The kinetic energy equation for the zonally averaged

flow u, averaged in time over many inertial periods,

takes the form

›
t
MKE� n›

zz
MKE 5�hu � ›

z
w9u9i � «

MKE
, (34)

where MKE 5 (½)hu � ui is the kinetic energy of the mean

flow, and the terms on the right-hand side are the con-

version of energy from the zonally averaged flow to wave

energy and dissipation of mean energy «MKE 5 nhjuzj
2i,

respectively. The second term on the left is the transport

FIG. 6. (top) Energy and (bottom) momentum fluxes at the

bottom as a function of �2: diagnosed from simulations (black

squares and circles), predicted from linear lee-wave theory (dashed

line), and predicted from linear theory for inertial harmonics

(solid line).
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of the mean kinetic energy by viscous terms. The over-

bars and brackets represent spatial and time averages.

Similarly, the kinetic energy equation for the wave

component u9 can be written as

›
t
EKE� n›

zz
EKE 5�›

z
hp9w9i1 U

G
hw9u9i1 hu � w9u9i1 1

2
hw9u9 � u9i

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

(I)

1 U
G

›
z
hw9u9i|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

(II)

1 hu � ›
z
w9u9i|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

(III)

1 hb9w9i|fflfflffl{zfflfflffl}
(IV)

� «
EKE|ffl{zffl}
(V)

, (35)

where the terms on the left-hand side represent the evo-

lution of the wave kinetic energy EKE 5 ½hu9 � u9i and

its transport by viscous terms. The terms on the right-hand

side are (I) the divergence of the total wave energy flux,

(II) the energy exchange with the geostrophic flow UG,

(III) the energy exchange with the zonally averaged

flow u, (IV) the energy conversion to potential energy, and

(V) the wave dissipation rate «EKE 5 nhj$u9j2i. The total

wave energy flux (I) includes the pressure work, downward

transport of the geostrophic and inertial flow kinetic en-

ergies, and energy transport by the triple-correlation term.

The MKE and EKE budgets averaged over the bot-

tom 1 km for the � 5 0.4 simulation are summarized in

Tables 1 and 2. Both the mean and wave energy budgets

are nearly closed—the residuals are less than 5% of the

energy dissipation value. The MKE budget shows that

the wave work is largely balanced by viscous dissipation,

with only 25% of the work going into accelerating the

IOs. To leading order,

�hu � ›
z
w9u9i’ «

MKE
. (36)

The EKE budget shows that at leading order the en-

ergy extracted by the waves from the geostrophic flow

UG goes in approximately equal parts to supporting IOs

and internal wave dissipation,

U
G

›
z
hw9u9i’�hu � ›

z
w9u9i1 «

EKE
. (37)

By summing (36) and (37), we have the total energy

balance, where energy extracted from the mean geo-

strophic flow is balanced by dissipation of both waves

and IOs:

U
G

›
z
hw9u9i’ «

MKE
1 «

EKE
. (38)

This balance holds quite well in the bottom 1 km of the

water column as shown in Fig. 8. The various energy

pathways are summarized in Fig. 9.

FIG. 7. Snapshot of the wave zonal velocity (m s21) from the � 5 0.4 simulation.
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To study the degree to which wave radiation and break-

ing are sensitive to the choice of the bottom boundary

condition, we ran the reference simulation � 5 0.4, with

both free-slip and no-slip boundary conditions. In the

latter case, we found that wave dissipation was reduced

by about 20%–30%—the simulations were otherwise

very similar. It is still possible that boundary conditions

have a more profound impact at larger � if they lead to

a substantial increase in the thickness of the turbulent

bottom boundary layer so as to suppress wave genera-

tion. However, preliminary tests suggest that these ef-

fects become important only for � . 1, a regime rarely

encountered in open ocean conditions (NF). The question,

however, deserves more attention and would require the

implementation of a boundary condition capable of re-

solving the stress in the logarithmic layer.

d. Wave breaking and dissipation

The numerical simulations show that the generation and

dissipation of kinetic energy depends on the vertical di-

vergence of the wave momentum flux. Linear theory gives

a good prediction for the wave fluxes at the bottom of the

simulation domain. The vertical scale of flux divergence is

instead determined by the wave breaking scale. In the

simulations described so far, the vertical scale of the wave

breaking region is of the order of 700 m and essentially

independent of �, or more specifically of the topography

amplitude hT that we varied to change �. However, the

vertical extent of the breaking region depends on the to-

pographic wavenumber kT and the Coriolis frequency

f—that is, it depends on the nondimensional parameters x,

b, and N/f. We find that the wave breaking scale increases

with increasing b and N/f (decreasing f ), with a weaker

dependence on x (through kT).

There are three main pathways from wave generation

to wave breaking. First, the radiated waves can have

sufficient amplitude to become convectively or shear

unstable. This is not the case in our simulations because

the linear wave solutions are stable. Second, wave–wave

interactions can transfer energy to smaller-scale waves

with large shears. This is the classical turbulent picture,

where energy is fluxed from larger to smaller scales

where instabilities develop and waves break. We can

rule out this pathway because the interaction time scale

estimated for wave amplitudes observed in our simula-

tions is of the order of a day, which is long enough for

waves to radiate up to 2–3 km before they can break

(McComas and Muller 1981). Third, modulation by

background shear or changes in stratification can make

the waves unstable. In our simulations, a large inertial

shear seems to trigger the observed wave breaking.

Upward-propagating wave packets, which are generally

stable, based on the Richardson number criteria, break as

they pass through a vertically sheared IO. The effect of

IOs on the propagation of internal wave packets is de-

scribed by Broutman and Young (1986), based on ray-

tracing theory. Here, IOs play the role of a filter, separating

long internal waves that manage to pass through IOs

without any substantial change and short internal waves

that are modulated by IOs, causing an increase in their

vertical wavenumbers until they break. Almost all wave

modes generated at the bottom have a scale shorter than

the IO scale and are significantly affected by the IOs.

Wave breaking is therefore confined to the depth range

where there is significant IO shear.

The argument is a bit circular at this point, because we

showed that the IOs are in turn driven by wave radiation

and dissipation. The circularity is broken if we consider

the initial value problem. Small IOs are generated during

the initial transient (among other high-frequency transient

waves). These IOs make the problem time dependent

with the radiation of multichromatic wave packets de-

scribed by the linear wave theory developed in section 3.

TABLE 1. Mean.

›tMKE n›zzMKE �hu � ›zw9u9i 2�MKE

2.0 20.1 7.3 25.2

TABLE 2. Wave.

›tEKE n›zzMKE 2›zF UG›zhw9u9i

20.2 20.1 20.1 13.5

hu � ›
z
w9u9i hb9w9i 2�MKE

27.3 0 25.9

FIG. 8. Vertical profiles of the total energy dissipation rate (gray)

and energy conversion from the mean subinertial flow into internal

waves (black; W kg21) for the � 5 0.4 simulation.
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The wave packets, predicted by (2), set the scale of the

vertical momentum flux divergence and further reinforce

the IOs within that depth range. The size of these packets

depends on the vertical scales of internal wave modes and

the number of modes involved: increasing both b and N/f

(for example by decreasing f ) allows for the radiation

of a larger number of higher harmonics, which results in

an increased characteristic wave packet scale, thicker

IOs, and a thicker region characterized by wave breaking.

Finally, we diagnose the turbulent dissipation rate «

from the simulations. Figure 10 shows vertical profiles of

time-averaged dissipation rates from different � simula-

tions. Values of the dissipation rates integrated over 1-km

depth above the bottom are shown in Fig. 11. The mag-

nitude of the turbulent dissipation rate generally increases

with �, as the internal wave amplitude grows and waves

become more nonlinear and break. The dissipation rate is

significantly intensified in the bottom 1 km, where most of

the wave breaking takes place, and then decays in the

ocean interior. The dissipation rate integrated over the

bottom 1 km saturates at about 25 mW m22 for � $ 0.7.

6. Conclusions

In this study, we used a weakly nonlinear theory and

idealized numerical simulations to describe radiation and

dissipation of internal waves generated by geostrophic

flows over rough topography. A novel result of this paper

is that there are two regimes of internal wave generation

by geostrophic flows: quasi-stationary and time-dependent

wave radiation regimes. In the quasi-stationary regime,

internal waves radiate in the form of lee waves, with

scales and amplitudes consistent with a linear theory for

wave generation by steady flows. Lee waves radiate

freely away from topography and result in low mixing

rates above topography. In the time-dependent regime,

we find that a resonant feedback between the large-scale

flow and internal waves drives IOs within O(1) km above

topography. A combination of the mean flow and IOs

radiates time-dependent and multichromatic internal

waves consistent with a linear theory for wave genera-

tion by oscillatory flows. In this regime, strong vertical

shear associated with IOs results in enhanced wave

breaking and high mixing rates above topography.

In the idealized problem considered here, we have

chosen parameters that mimic geostrophic flows and

topographic features found in the Drake Passage sector

of the SO, one of the very few places where dissipation

estimates from observations are available. We find that

internal waves are radiated from a limited range of to-

pographic horizontal scales, varying from about 600 m to

6 km, with most of the radiation resulting from topo-

graphic features of 1–3-km scales. The vertical scale of

FIG. 9. Diagram of energy pathways. Energy conversion and dissipation values (mW m22)

are from the �5 0.4 simulation. The values inside the boxes represent growth (time derivative)

of kinetic energy.

FIG. 10. Vertical profiles of energy dissipation rate (W kg21) from

different simulations with different � values.
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the radiated internal waves is about 600 m, significantly

shorter than the local ocean depth. The characteristic

steepness parameter is 0.6—that is, topographic slopes

are close to critical. At this steepness parameter, radia-

tion of internal waves corresponds to the time-dependent

and multichromatic wave radiation regime.

The associated wave dissipation rates are of O(10)

mW m22, in agreement with energy dissipation estimates

inferred from observations by Naveira Garabato et al.

(2004) and larger than those estimated by Kunze et al.

(2006). Energy dissipation estimates from observations

depend on the estimate of the strain/shear ratio which is,

in the Drake Passage region, found to be larger than

expected for internal waves. The large strain/shear ratio is

interpreted by Kunze et al. (2006) as a high level of noise

and was low-pass filtered resulting in smaller energy

dissipation estimates. However, our study suggests that

the large strain/shear ratio could result from the strong IO

above the bottom in regions with steep topography, im-

plying that the mixing rates could be as high as estimated

by Naveira Garabato et al. (2004).

Our estimate of radiation by geostrophic motions in

Drake Passage exceeds, by a factor of 10, the energy ra-

diated by tides in the same region (based on data kindly

provided by J. Nycander and described in the introduction).

Equations (2) and (3) show that the energy radiation

is proportional to the square of the bottom velocity,

whether it is tidal or geostrophic. Differences in these

two estimates reflect primarily that geostrophic flows are

more energetic than tidal flows in large parts of the

Southern Ocean—bottom geostrophic flows from LADCP

data in Drake Passage and the Scotia Sea are O(10) cm s21

(Naveira Garabato et al. 2002, 2003), whereas barotropic

tidal flows based on the Ocean Topography Experiment

(TOPEX)/Poseidon Cross-Over Global Inverse Solution,

version 3 (TPXO.3) model (Egbert et al. 1994) are

smaller at O(2) cm s21 (Kunze et al. 2006). NF present

a more thorough analysis of observations and confirm

the estimates reported here.

The instability that triggers IOs at the bottom is es-

sentially a parametric instability. Its characteristics are

similar to the ones of the van der Pol oscillator, with the

damping term represented by the divergence of the wave

momentum fluxes. The superposition of a mean flow and

an IO over the bottom topography generates a pair of

waves: one is a lee wave, forced by the mean flow, and the

other is a harmonic of the inertial frequency, forced by

the IO. These two waves transfer energy to f through

a triad interaction (McComas and Bretherton 1977);

however, note that the triad would not be very efficient in

the absence of the bottom boundary condition. The

boundary conditions are key because, as these waves

break and deposit their momentum, they reenergize the

IO in the zonally averaged flow. A stronger inertial

component of the zonally averaged flow energizes the

initial pair of waves and the feedback continues. In

a sense, this is a problem of wave–mean flow interaction

rather than wave–wave interaction. As a result of the

instability, the IO grows at the expense of the mean flow.

The vertical shear associated with the IOs promotes

enhanced wave breaking by compressing the vertical

scale of the waves radiated from the bottom topography.

For a steepness parameter larger than approximately

0.4, this mechanism of the transferring of wave energy to

small scales dominates over nonlinear wave–wave inter-

actions (Polzin 2004). Nonlinear wave–wave interactions,

instead, dominate at smaller values of the steepness pa-

rameter because IOs remain too weak to substantially

affect the radiating waves.

The numerical simulation setup (2D and zonally pe-

riodic domain) is such that the IOs cannot radiate hor-

izontally; therefore, they always stay in the region of

strong geostrophic flow above rough topography, where

they get reinforced by internal waves through the reso-

nant feedback. In the ocean, however, IOs are modu-

lated by the large-scale variations in the mean flow. This

modulation imposes a horizontal scale on the oscilla-

tions, making them near-inertial, and allowing them to

radiate both horizontally and vertically. Using a geo-

strophic eddy scale of O(100) km as the horizontal scale

of near-inertial oscillations and 1 km as their vertical

scale, we find, estimating wave group velocities, that it

takes near-inertial waves roughly 20 days to radiate an

eddy scale away. This time scale is an order of magni-

tude longer than the characteristic growth rate of O(2)

days, associated with the resonant feedback mechanism.

FIG. 11. Energy dissipation rate (mW m22) integrated in the

bottom 1 km.
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Over the 2-day time period, near-inertial oscillations

radiate horizontally at a distance of only about 5 km.

Furthermore, changes in the Coriolis frequency on this

distance as a result of the beta effect and geostrophic

flow shear are insignificant, ’0.1%. Based on these

simple scaling arguments, we expect the feedback to

occur also in 3D on a b plane. However, a more thor-

ough analysis of the effect of a background vorticity

gradient is left for a future study.

There is some observational support for enhanced IOs

above rough topography in regions with high diapycnal

mixing rates. Toole (2007) and Thurnherr et al. (2005)

report a significant amount of shear variance derived

from near-inertial motions, accompanied by strong

subinertial currents on the western flank of the mid-

Atlantic Ridge in the South Atlantic.

The results described in this study for the 2D problem

have been extended to 3D in Nikurashin (2009). The

extension of the theory is straightforward and there are

no fundamental differences between 2D and 3D, except

that the number of modes involved in the radiation prob-

lem increases substantially in 3D. Linear theory predicts

accurately the energy radiation diagnosed from 3D nu-

merical simulations with a sinusoidal bump. We have

not extended the wave–mean flow feedback theory to

3D because of the algebraic complexity of the problem.

However, numerical simulations show that the growth

rate of IOs and the energy dissipation are similar to the

2D case.

Radiation and dissipation of internal waves generated

by geostrophic flows over rough topography can be the

primary mechanism responsible for enhanced abyssal

mixing in the SO. The partial absence of meridional

boundaries makes the SO a special place, where the

geostrophic field has to equilibrate through dissipation

at the bottom boundary. Quasigeostrophic turbulence

theory suggests that this is achieved through an inverse

cascade, where the geostrophic eddies develop a large

barotropic component. In this study, we showed that

bottom geostrophic flows can sustain enhanced dia-

pycnal mixing O(1) km above topography, which is

crucial for the dynamics of the lower cell of the merid-

ional overturning circulation. These issues are further

explored in a companion paper (NF), where the theory

developed here is tested against observations.
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APPENDIX A

Scaling and Multiscale Expansion

The expansion of equations governing the wave–mean

flow interaction is best carried out in a nondimensional

form. We nondimensionalize Eqs. (6)–(9) and the bound-

ary conditions from (10) using the following scales:

t! f�1t, x! L
W

x, z! H
W

z,

h
T
! H

T
h, u! U

G
u,

w! U
G

H
W

L
W

w, p! fL
G

U
G

p,

b!
fL

G
U

G

H
G

b, D
m,b
! fD

m,b
,

where LW, HW, LG, and HG are the horizontal and vertical

scales of the waves and geostrophic flow, respectively, HT

is the topographic amplitude, and UG is the geostrophic

velocity scale. With these scales, the governing equations

take the following nondimensional form:

u
t
1 Ro

L
G

L
W

[(u � $
H

)u 1 wu
z
] 1 ẑ 3 u 5�

L
G

L
W

$
H

p 1D
m

(u),

d2
Ww

t
1 d2

WRo
L

G

L
W

[(u � $
H

)w 1 ww
z
] 5�

L
G

L
W

p
z

1
L

G

L
W

H
W

H
G

b 1 d2
WDm

(w),

b
t
1 Ro

L
G

L
W

[(u � $
H

)b 1 wb
z
] 1 Bu

L
G

L
W

H
W

H
G

w 5D
b
(b),

$
H
� u 1 w

z
5 0.

The lower- and upper-boundary conditions become

wj
z5�h(x)

5 �u � $
H

h(x) and wj
z!‘

5 0.

The nondimensional numbers that appear in the prob-

lem are the Rossby number Ro 5 UG/fLG and the

Burger number Bu 5 N2H2
G/ f 2L2

G of the geostrophic
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flow, the aspect ratio of the internal waves dW 5 HW/LW,

and the topographic steepness parameter � 5 HT/HW ’

NHT/UG.

In the ocean, geostrophic flows are characterized by

a small Ro and vary on spatial scales much larger than

internal waves, which allows us to impose the following

scale separation:

L
W

L
G

5 Ro,
H

W

H
G

5 Ro.

In addition, we assume that the aspect ratio of internal

waves is small O(Ro)—that is, the waves are hydrostatic

and the Burger number of the geostrophic flow is O(1).

With this choice of parameters, the nondimensional equa-

tions and the boundary conditions can be rewritten as

u
t
1 (u � $

H
)u 1 wu

z
1 ẑ 3 u 5�Ro�1$

H
p 1D

m
(u),

(A1)

Ro2[w
t
1 (u � $

H
)w 1 ww

z
] 5�Ro�1p

z
1 b

1 Ro2D
m

(w), (A2)

b
t
1 (u � $

H
)b 1 wb

z
1 w 5D

b
(b), (A3)

$
H
� u 1 w

z
5 0, (A4)

wj
z5�h(x)

5 �u � $
H

h(x), wj
z!‘

5 0. (A5)

We expand variables and scales in the small steepness

parameter �, imposing that the leading-order flow u(0) is

a superposition of a geostrophic flow uG, varying on slow

temporal and spatial scales TG and XG, and an inertial

oscillation uI with an amplitude and phase varying on

slow temporal and spatial scales TI and XI, so that

u 5 uG(T
G

, X
G

) 1 uI(t; T
I
, X

I
) 1 �u(1) 1 �2u(2)

1 �3u(3) 1 � � � ,

w 5 wG(T
G

, X
G

) 1 wI(t; T
I
, X

I
) 1 �w(1) 1 �2w(2)

1 �3w(3) 1 � � � ,

p 5 pG(T
G

, X
G

) 1 �2RopI(t; T
I
, X

I
) 1 �Rop(1)

1 �2Rop(2) 1 �3Rop(3) 1 � � � , and

b 5 bG(T
G

, X
G

) 1 �3bI(t; T
I
, X

I
) 1 �b(1) 1 �2b(2)

1 �3b(3) 1 � � � ,

where u(n) are the higher-order motions depending on

all scales of the problem. Consistent with the previous

scaling, geostrophic flow uG is assumed to vary on the

slow subinertial scales TG 5 Rot and XG 5 Rox. In our

problem, the inertial oscillation is forced by the vertical

divergence of internal wave momentum fluxes, which

are assumed to vary on O(Ro21) scales in the horizontal

and O(�21) scale in the vertical, implying that XI 5 Rox,

ZI 5 �z, and TI 5 �3t. Assuming that Ro is O(�4), this

choice of scales allows a clean separation between the

geostrophic flow uG 5 uG[T (4), X(4)], inertial oscillations

uI 5 uI[t; T (3), X(4), Y(4), Z(1)], and internal waves u(1) 5

u(1)(t, x; . . .), where T (n) and X(n) are the terms of an

expansion of scales t and x in the small steepness pa-

rameter �.

The momentum and buoyancy dissipation operators

are expended as

D
m,b

5 �D(1)
m,b 1 �2D(2)

m,b 1 �3D(3)
m,b 1 � � � .

The dissipation operator D(0)
m,b, acting on the leading-

order flows uG and uI, which vary on the large spatial

scales, is weak. For example, if we consider a Laplacian

form of dissipation operator D(0)
m (u(0)) 5 n=2u(0) then

the ratio of the dissipation and Coriolis terms in the

governing equations scale as the Ekman number Ek 5

n/( fH2
G). The Ekman number of geostrophic flows in the

ocean is small O(Ro). Hence, we assume that D(0)
m,b en-

ters at higher orders in the expansion. Although the

Laplacian form of the dissipation operators is more

appropriate for this problem, it makes it difficult to solve

the problem analytically. To make analytical progress,

in section 3a we use dissipation operators in the form of

a linear drag D(n)
m (u(n)) 5�lu(n), where l is the dissi-

pation rate. The dissipation rate of the leading-order

flow is assumed to be weak, l(0)� f.

Expanding Eqs. (A1)–(A4) with the boundary con-

ditions of (A5) and collecting O(�0) terms, we obtain the

following set of equations describing the evolution of the

leading-order flow:

uI
t 1 ẑ 3 (uG 1 uI) 5�$X(4) pG,

0 5�pG
Z(4) 1 bG,

wG 1 wI 5 0.

Averaging these equations over the fast time scale t, we

separate the balanced geostrophic flow uG from the

evolution of the inertial oscillation uI. Corresponding

sets of the equation in dimensional form are given in

(12) and (13) for the geostrophic flow and inertial os-

cillation, respectively.

Collecting O(�1) terms, we obtain a set of equations

describing the evolution of internal waves generated by

O(�0) motions interacting with bottom topography. This

set of equations is given in (14)–(18) in dimensional

MAY 2010 N I K U R A S H I N A N D F E R R A R I 1071



form. Averaging these equations over the small spatial

scales we obtain the following equation for O(�1) inertial

oscillations:

u
(1)
t 1 ẑ 3 u(1) 5D(1)

m (u(1)), w(1) 5 0,

which is trivial because there is no forcing and u(1) 5 0

at t 5 t0.

To capture the evolution of O(�0) inertial oscillation uI

on the slow time scale T(3), we need to expand equations

to higher orders. Collecting O(�2) terms, we obtain

u
(2)
t 1 u(0) � $xu(2) 1 ẑ 3 u(2) 5�$xp(2) 1D(2)

m � w(1)uI
Z(1) � u(1)$xu(1) � w(1)u(1)

z ,

0 5�p(2)
z 1 b(2) � p

(1)

Z(1) ,

b
(2)
t 1 u(0) � $

x
b(2) 1 w(2) 5D(2)

b � u(1)$
x
b(1) � w(1)b(1)

z ,

$
x
� u(2) 1 w(2)

z 5�w
(1)

Z(1) .

Averaging over small spatial scales, we obtain equations

for the O(�2) inertial oscillations:

u
(2)
t 1 ẑ 3 u(2) 5D(2)

m (u(2)), w(2) 5 0.

Because there is no forcing and u(2) 5 0 at t 5 t0, this

equation is trivial.

Finally, collecting O(�3) terms, we get

u
(3)
t 1 u(0) � $

x
u(3) 1 ẑ 3 u(3) 5�$

x
p(3) 1D(3)

m � uI
T(3) � w(2)uI

Z(1) ��u(1)$
x
u(2) � w(1)u(2)

z � u(2)$
x
u(1)

� w(2)u(1)
z � w(1)u

(1)

Z(1) ,

0 5�p(3)
z 1 b(3) � pI

Z(1) 1 bI � p
(2)

Z(1) ,

b
(3)
t 1 u(0) � $

x
b(3) 1 w(3) 5D(3)

b � bI
t � u(1)$

x
b(2) � w(1)b(2)

z � u(2)$
x
b(1) � w(2)b(1)

z � w(1)b
(1)

Z(1) ,

$x � u
(3) 1 w(3)

z 5�w
(2)

Z(1) .

Averaging over the small spatial scales, we obtain the set

of equations describing both the evolution of the O(�3)

inertial oscillations on the fast time scale and the evo-

lution of O(�0) inertial oscillations on the slow time

scale. Equations in dimensional form are given in (19).

APPENDIX B

Wave Momentum Flux Divergence

A complete analytical expression for internal wave

momentum flux divergence can be computed from the

O(�1) internal wave solution. If we write the solution for

wave velocities as

w(1)5� �
‘

n5�‘
J

n
(b)Im(a

n
eiu

n ), a
n

5 h
T

s
n
,

u(1)5 �
‘

n5�‘
J

n
(b)Im(b

n
eiu

n ), b
n

5 h
T

s
n
m

n
k�1

T ,

y(1)5 �
‘

n5�‘
J

n
(b)Re(c

n
eiu

n), c
n

5 h
T

s
n
m

n
k�1

T f (s
n
� il)�1,

then using V 5u 1 iv, the zonally averaged wave mo-

mentum flux can be written as

V(1)w(1) 5�1

4
�
‘

m5�‘
�
‘

n5�‘
J

m
(b)J

n
(b)a

m

3 [(b
n
* 1 c

n
*)ei(u

m
�u

n
*) 1 (b

n
� c

n
)e�i(u

m
*�u

n
)].

(B1)

The phase of the wave momentum flux u
m
� u

n
* 5

(m
m
�m

n
*)z 1 (m� n) f (t � t

0
) shows that the flux is

time dependent and it oscillates at harmonics of the in-

ertial frequency f. The corresponding vertical diver-

gence of the wave momentum flux evaluated at z 5 0 can

be written as a superposition

›
z
V(1)w(1) 5 ›

z
V(1)w(1)

v50
1 ›

z
V(1)w(1)

��� ���
v56f

1 � � � ,

where the first-term steady component of the flux di-

vergence is found by collecting terms with m 5 n in (B1),

so that

›
z
V(1)w(1)

v50

�� 5A(b)

5 �
‘

n5�‘
J2

n(b)Im(m
n
)a

n
[Re(b

n
)� iIm(c

n
)].
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Collecting terms with m 5 n 6 1, we obtain a time-

dependent component of the flux divergence oscillating

at the inertial frequency 6f,

›
z
V(1)w(1)

v56f
5�B(b)e�if (t�t0) � C(b)eif (t�t0)

��� ,

where

B(b) 5
i

4
�
‘

n5�‘
J

n
(b)[J

n�1
(b)a

n�1
(b

n
* 1 c

n
*)(m

n�1
�m

n
*)� J

n11
(b)a

n11
(b

n
� c

n
)(m*

n11
�m

n
)],

C(b) 5� i

4
�
‘

n5�‘
J

n
(b)[J

n�1
(b)a

n�1
(b

n
� c

n
)(m*

n�1
�m

n
)� J

n11
(b)a

n11
(b

n
* 1 c

n
*)(m

n11
�m

n
*)].

The amplitudes of the flux divergence A, B, and C de-

pend nonlinearly on b. In the limit of the small b this

dependence can be simplified to

A(b) ’ A 1 O(b2), B(b) ’ Bb 1 O(b2),

C(b) ’ Cb 1 O(b2),

where A, B, and C are constants that depend on fixed

external parameters of the problem. For example, the

steady component of the wave momentum flux di-

vergence becomes

A 5 h2
TU2

Gk
T

Re(m
0
)Im(m

0
)

3 1� i
fU

G
k

T

U2
Gk2

T 1 l2

 !
l

U
G

k
T

1
Im(m

0
)

Re(m
0
)

" #( )
,

which is the momentum flux divergence of the steady,

damped lee waves with rotation. This flux divergence is

zero in the limit of no damping. Expressions for B and C

are somewhat more convoluted and not shown here, but

they can be easily obtained from B(b) and C(b) using

J
0
(b) ’ 1 1 O(b2), J

61
(b) ’ 6

1

2
b 1 O(b2).
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