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ABSTRACT

A buoyancy and volume budget analysis of bottom-intensified mixing in the abyssal ocean reveals simple

expressions for the strong upwelling in very thin continental boundary layers and the interior near-boundary

downwelling in the stratified ocean interior. For a given amount of Antarctic Bottom Water that is upwelled

through neutral density surfaces in the abyssal ocean (between 2000 and 5000m), up to 5 times this volume flux

is upwelled in narrow, turbulent, sloping bottom boundary layers, while up to 4 times the net upward volume

transport of Bottom Water flows downward across isopycnals in the near-boundary stratified ocean interior.

These ratios are a direct result of a buoyancy budget with respect to buoyancy surfaces, and these ratios are

calculated from knowledge of the stratification in the abyss along with the assumed e-folding height that

characterizes the decrease of the magnitude of the turbulent diapycnal buoyancy flux away from the seafloor.

These strong diapycnal upward and downward volume transports are confined to a few hundred kilometers of

the continental boundaries, with no appreciable diapycnal motion in the bulk of the interior ocean.

1. Introduction

The Antarctic Bottom Water (AABW) that sinks to

the seafloor must rise through density surfaces in the

abyss through the action of diapycnal mixing processes

(together with a smaller role for geothermal heating).

The classic ‘‘abyssal recipes’’ paper of Munk (1966)

achieved this diapycnal upwelling via a one-dimensional

advection–diffusion balance, which was consistent

with a constant diapycnal diffusion coefficient of about

1024m2 s21 throughout the ocean interior. Since the

buoyancy frequency increases with height, this one-

dimensional advection–diffusion balance implies that

the magnitude of the buoyancy flux and therefore the

dissipation of turbulent kinetic energy is an increasing

function of height; however, observations and theory

over the past 20 yr have shown just the opposite,

namely, that diapycnal mixing activity increases toward

the seafloor.

In the past 20 yr, and particularly as a result of the

Brazil Basin experiment of WOCE, observations and

theory have shown that most of the diapycnal mixing

activity in the deep ocean occurs above rough bottom

topography and is bottom intensified with an e-folding

height above the bottom with a typical vertical e-folding

length scale of ;500m (Kunze et al. 2006).

The decrease of the magnitude of the diapycnal

buoyancy flux with height above the bottom causes a

downwelling diapycnal velocity, and this raises the

question of how AABW can upwell across isopycnals

when the diapycnal mixing activity profile on every

vertical cast implies downwelling. Polzin et al. (1997)

and St. Laurent et al. (2001) were aware of this apparent

conundrum in the interior of the Brazil Basin, and they

realized that the zero-flux condition at the seafloor

meant that there must be diapycnal upwelling in the

bottom boundary layer. Klocker and McDougall (2010)

emphasized that the overall buoyancy budget can be

satisfied while having the mean diapycnal motion being

upward if the area of isopycnals increase with height;

that is, the conundrum of how water can be upwelled

diapycnally while having the magnitude of the diapycnal

buoyancy flux increase toward the seafloor on every

vertical cast cannot be resolved in an ocean with vertical

sidewalls but is possible with a sloping seafloor. How-

ever, their area-integrated buoyancy argument did not

resolve the question of exactly where and how the water
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upwells through isopycnals, although with hindsight,

and through the process of elimination, it is clear that

this diapycnal upwelling must occur very near the slop-

ing boundary, as predicted by St. Laurent et al. (2001).

De Lavergne et al. (2016) have diagnosed the negative

diapycnal transport in the ocean interior caused by near-

boundary breaking internal waves, and they have

pointed toward the important role of the turbulent

bottom boundary layer (BBL) in order to upwell the

AABW and to close the circulation. Ferrari et al. (2016)

have studied the crucial role of these BBLs in allowing

sufficiently strong upwelling across isopycnals therein

to overcome the downwelling in the near-boundary

stratified interior, while farther away from the ocean

boundaries there is almost no diapycnal motion. This

view of the abyssal circulation contrasts sharply with our

previous view of the diapycnal upwelling being distrib-

uted uniformly over the deep-ocean basins. Ferrari et al.

(2016) showed that both in idealized numerical simula-

tions and in the real ocean, the upwelling in the narrow

turbulent boundary layers varied from 2 to 3 times the

mean upwelling transport of AABW.

The feature that causes this rather dramatic change in

where we expect diapycnal motion in the abyss is the

bottom intensification of the diapycnal buoyancy flux. In

the present paper, we examine the volume-integrated

buoyancy budget between pairs of buoyancy surfaces in

the abyss using the Walin framework for including the

influence of diapycnal transports and the boundary flux

of buoyancy (i.e., the geothermal heat flux). The buoy-

ancy budget for the whole ocean volume beneath a

certain buoyancy surface is given by the very simple Eq.

(12), which shows that in steady state the magnitude of

the diffusive flux of buoyancy across this buoyancy sur-

face is equal to the integral with respect to buoyancy of

the net diapycnal upwelling below this buoyancy sur-

face. By assuming that the bottom intensification occurs

in an exponential fashion with height, we are able to

relate the downward diapycnal volume transport in the

near-boundary ocean interior [called the stratified mix-

ing layer (SML)] to the total diapycnal diffusive buoy-

ancy flux across a buoyancy surface. This leads to very

simple expressions [Eqs. (13) and (14)] for both the

upwelling diapycnal volume flux in the BBL and the

downwelling diapycnal volume flux in the SML in terms

of the net upwelling of AABW in the abyss. The appli-

cation of the Walin budget framework with respect to

density surfaces in the abyss, and the resulting Eqs. (13)

and (14) are the main results of this paper.

One of the main conclusions is that the magnitude of

the area-integrated buoyancy flux F on a global buoy-

ancy surface must be an increasing function of buoyancy

in order to have net upwelling through a stably stratified

ocean. As pointed out by Klocker and McDougall

(2010), this upwelling needs to be achieved despite the

fact that the magnitude of the turbulent buoyancy flux

is a decreasing function of height on each vertical profile.

Nonetheless, the ocean has found a way to achieve the

net upwelling of bottom waters, and the secret lies in the

BBLs (St. Laurent et al. 2001; de Lavergne et al. 2016;

Ferrari et al. 2016).

There are two ways of ensuring that the magnitude of

the area-integrated buoyancy flux increases with buoy-

ancy (height). First, the magnitude of the buoyancy flux

just above the turbulent boundary layer B0 can be an

increasing function of buoyancy, and second, the area of

the SML can increase with buoyancy. Neither of these

ways of achieving the increase with buoyancy of the

magnitude of the area-integrated buoyancy flux (i.e.,

dF/db . 0) were considered in the seminal boundary

mixing descriptions of Thorpe (1987),Garrett (1990, 1991,

2001), or Garrett et al. (1993) except perhaps in their

reference to the ‘‘tertiary circulation’’ of Phillips et al.

(1986) and McDougall (1989).

Our focus is on the mixing in the stratified ocean in-

terior, and this focus is crucial. This region of mixing was

also the focus of Klocker and McDougall (2010), de

Lavergne et al. (2016), and Ferrari et al. (2016). Mixing

very close to the sloping seafloor suffers from two effects

that make the mixing processes there particularly in-

effective at contributing to the flux of buoyancy. First,

the mixing efficiency is reduced in this boundary region

because the stratification is observed to become very

small, and second, there is a ‘‘secondary circulation’’

that was found by Garrett (1990, 2001) to dramatically

reduce the net vertical flux of buoyancy. Armi (1979)

and Garrett (1990) both made the point that if near-

boundary mixing were to make a significant contribution,

then itwould need to occur in the stratified near-boundary

region. This is exactly the SML region in which the en-

hanced diapycnal mixing above rough topography is ob-

served to occur.

The classic boundary mixing papers of Wunsch

(1970), Phillips (1970), Thorpe (1987), and many of the

Garrett papers solve both the momentum and buoyancy

equations, but in this paper we ignore the momentum

balance and concentrate only on the buoyancy equation,

as did Garrett (2001). Furthermore, along an isopycnal

near a sloping boundary the interior ocean is divided

into two regions depending on the sign of the diapycnal

velocity.

In this paper, we concentrate on the dianeutral up-

welling and downwelling in the abyssal ocean for density

classes that outcrop in the Southern Ocean but do not

outcrop in the North Atlantic, so that it is clear that the

upwelling must occur diapycnally in the ocean interior
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(Talley 2013). Throughout this paper we use the term

upwelling to mean the diapycnal upwelling through

buoyancy surfaces (rather than through geopotential

surfaces as is sometimes meant by the word upwelling).

By performing our analysis with respect to density sur-

faces, the strong isopycnal flows and isopycnal turbulent

stirring and mixing do not enter our equations. That is,

while these strong epineutral mixing processes will be

effective at diluting any tracer signature of near-

boundary diapycnal mixing processes into the ocean

interior, they do not enter or complicate our analysis of

diapycnal mixing and advection in density coordinates.

2. Diapycnal volume transports expressed in terms
of the turbulent buoyancy fluxes and the
geothermal heat flux

In the present work, we represent the boundary region

in a particularly simple manner. We allow a turbulent

boundary layer right against the sloping seafloor in

which the isopycnals are assumed to be normal to the

seafloor, and at the top of this turbulent boundary layer

we have assumed that the stratification abruptly changes

to have the isopycnals essentially flat.

The vertical profile of the magnitude of the diapycnal

buoyancy flux B in the deep ocean is taken to be zero at

the seafloor and to increase with height in the BBL to a

maximum value of B0 at the top of the BBL of thickness

h and then to decrease exponentially with height (with

scale height d) in the SML (see Fig. 1). The influence of

the geothermal heat flux at the seafloor is secondary, as

discussed below. The turbulent buoyancy flux can be

written in terms of the turbulent diffusivity D acting on

the vertical gradient of buoyancy bz as the downgradient

flux2Dbz (and note that bz 5 N2). We choose to frame

the discussion in terms of themagnitude of the turbulent

buoyancy flux per unit area, which we give the symbol B
so that in the ocean interior we have B 5 Dbz. Mea-

surements of the dissipation of turbulent kinetic energy

per unit mass « are often used to estimate B as B 5 G«,
where G is the mixing efficiency following Osborn

(1980). In the BBL it is the strong variation of themixing

efficiency G with height that is responsible for the mag-

nitude of the buoyancy flux per unit area going from

B0 at the top of the boundary layer to zero at the seafloor

(in the absence of the geothermal heat flux).

We examine the buoyancy budget for the volume

between two closely spaced buoyancy surfaces b and

b 1 Db, bounded by a sloping seafloor, as shown in

Fig. 2, following the approach of the appendix of Klocker

and McDougall (2010) and the volume-integrated buoy-

ancy and volume conservation approach ofWalin (1982).

We ignore several subtleties of the equation of state of

seawater and we take the vertical gradient of buoyancy

bz to be equal to the square of the buoyancy frequency,

that is, N2 5 bz, and we use subscripts to denote dif-

ferentiation. Because the mixing intensity decreases

smoothly in the vertical, the shaded control volume of

Fig. 2b actually extends all the way to the right in the

figure even though the shading is shown ending where

the mixing intensity becomes sufficiently small. Along

the upper b1Db surface the magnitude of the diffusive

buoyancy flux is the maximum value B0 on that buoy-

ancy surface at point a and decreases to the right, that

is, away from the boundary along the buoyancy surface.

Similarly, along the lower buoyancy surface, the mag-

nitude of the diffusive buoyancy flux is the maximum

value B0 on that buoyancy surface at point b and de-

creases to the right (the values of B0 at points a and

b may be different).

The seawater nearest the sloping seafloor is assumed

to be well mixed in a turbulent fashion, and the zero-flux

boundary condition (in the absence of the geothermal

heat flux) implies that the isolines of buoyancy are

normal to the seafloor at this boundary. The bottom

mixed layer properties such as the flow speed in the

boundary layer are taken to be independent of height in

the boundary layer, implying that the divergence of the

turbulent flux of buoyancy is also independent of height

inside the boundary layer. This is the motivation for why

we have taken the magnitude of the buoyancy flux B to

FIG. 1. In the deep ocean each vertical cast is assumed to have the

magnitude of the diffusive buoyancy flux B start at zero at the

seafloor and to increase with height in the turbulent BBL to

a maximum value of B0 at the top of the BBL of thickness h and

then decrease exponentially toward zero as B0 exp(2z0/d), where z0

is the height above the top of the turbulent boundary layer.
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vary linearly with height in the boundary layer from the

value B0 at the top of the turbulent boundary layer to

zero at the bottom.

The area of active mixing to the right of point a of the

upper isopycnal in Fig. 2b is not necessarily taken to be

equal to that to the right of point b of the lower isopycnal

because, for example, the sloping wall may well be part

of a surface of revolution, so that if this slope tanu is the

continental boundary of a circular ocean, then the area of

active mixing on the upper isopycnal will be larger than

that on the lower surface. Conversely, if the slope is the

sloping boundary of a seamount with a depth-independent

slope, the area of active mixing on the lower (annular)

surface will exceed that of the upper surface.

The horizontal distance of active mixing on the upper

isopycnal scales as d/tanu, which for small slopes far ex-

ceeds the corresponding distance h cosu along this iso-

pycnal inside the well-mixed turbulent boundary layer of

depth h. Because of this, and also because j=bj is smaller in

the boundary layer by a factor of sinu, compared with the

gradient in the stratified ocean interior bz, when evaluating

the total diffusive flux of buoyancy across the upper iso-

pycnal, we may ignore the contribution from the area that

lies inside the turbulent boundary layer and consider only

the contribution from the area to the right of point a of

Fig. 2. The same applies to the lower density surface.

We define the magnitude of the diffusive buoyancy

flux across the whole interior area of an isopycnal as

F5

ðð
B(b, x, y) dx dy, (1)

where it is recognized that this integral only needs to be

performed along the near-boundary SML where the

dissipation is significantly nonzero. That is, because B
decreases rapidly with height, it also decreases very

strongly with horizontal distance from the sloping

boundary (to the right) in Fig. 2b. The integral in Eq. (1)

is performed on a buoyancy surface so that F is a func-

tion only of buoyancy b.

The volume and buoyancy budgets of the shaded fluid

of Figs. 2a and 2b are examined in appendix A, where

the following results are found for the diapycnal volume

transports in the turbulent BBL EBBL and net diapycnal

volume transport Enet, being the sum of EBBL and the

diapycnal volume transport across the buoyancy surface

in the SML ESML:

E
BBL

5

ð
G1B

0

b
z

1

tanu
dc, and (2)

E
net

[ E
BBL

1 E
SML

5
dF

db
1

ð
G

b
z

1

tanu
dc . (3)

FIG. 2. The geometry of the near-boundary mixing region, concentrating on the volume

between two closely spaced buoyancy surfaces. The turbulent BBL against the solid boundary

has thickness h. The area integral of the diffusive flux of buoyancy, whose magnitude is F, is

directed downward while the diapycnal velocity e and the diapycnal volume fluxes ESML and

EBBL are defined positive upward. (a) The fluxes required to establish the buoyancy budget for

the turbulent BBL; (b) the corresponding terms needed for the buoyancy budget for the whole

shaded near-boundary region that includes the BBL.
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The difference between these two equations gives the

following expression for ESML:

E
SML

5
dF

db
2

ð B
0

b
z

1

tanu
dc . (4)

These statements for the various diapycnal volume

transports apply locally to an area of diapycnal mixing

near a boundary, and they apply even when the flow is

not in a steady state and also when the near-boundary

layer region receives (or exports) volume from/to the

rest of the ocean. That is, a complete integration over

the full area of a buoyancy surface is not needed to

obtain these results; these three equations are applicable

to a local area of mixing and also to the integral over a

complete isopycnal, and they apply whether the ocean is

stationary or nonstationary. The key assumptions we

have made are that (i) the amplitude of turbulent dia-

pycnal mixing decreases toward zero as one moves suf-

ficiently far from the sloping boundary and (ii) that a

well-mixed turbulent boundary layer exists very close to

the sloping solid boundary. At this stage we have not

assumed the functional form for the decrease of mixing

intensity with height.

In these equations dF/db is the rate at which the

magnitude of the isopycnally area-integrated turbulent

buoyancy flux F varies with respect to the buoyancy la-

bel b of the isopycnals; G and B0 are the fluxes of

buoyancy into the turbulent BBL per unit of exactly

horizontal area due to the geothermal heat flux G and

the diffusive buoyancy flux at the top of the BBL B0,

respectively; u is the angle that the bottom topography

makes with the horizontal; and dc is the element of

spatial integration into the page of Fig. 2.

Equation (2) shows that the sum of the geothermal

heat flux per unit area at the seafloor G and the mag-

nitude of the turbulent buoyancy flux per unit area at the

top of the BBL B0 drive a net upwelling volume trans-

port along the BBL. The diapycnal upwelling transport

EBBL increases as the seafloor slope tanu decreases, and

it increases in proportion to the circumference (or pe-

rimeter) of the edge of the isopycnal where it intersects

the ocean boundary. Equation (3) confirms that the net

diapycnal upwelling is proportional to the increase with

buoyancy of the magnitude of the area-integrated tur-

bulent buoyancy flux, as discussed in the introduction,

plus the geothermal contribution coming into the BBL.

Coming to grips with Eq. (4) for the diapycnal sinking in

the SML and its relationship to the BBL and net trans-

ports is a main focus of this work.

Klocker and McDougall (2010) applied this buoyancy

budget approach to the whole area of a neutral density

surface in the interior of the deep ocean, and they wrote

the volume-integrated buoyancy budget corresponding

to our Eq. (3) asAeN25 (AG«)z [see their Eq. (26), once
the effects of the nonlinear nature of the equation of

state are ignored in that equation and noting that their

derivation did not include the geothermal heat flux],

where the product Ae stood for the area integral of the

dianeutral velocity (i.e., Enet) andAG« stood for the area

integral of the magnitude of the diffusive buoyancy flux,

which we now label F. Ferrari et al. (2016) wrote this

volume-integrated buoyancy budget as their Eqs. (6) to

(8), and they distinguished between the dianeutral ad-

vection that occurs in the ocean interior ESML versus that

occurring in the boundary layer EBBL. In this work, we

continue to make this important distinction and to es-

timate the relative magnitudes of these two dianeutral

volume fluxes.

3. Diapycnal volume transports driven by the
geothermal heat flux and the background
turbulent diffusivity

It is apparent from the above equations that the

geothermal buoyancy flux contributes to the diapycnal

volume flux in the BBL but does not contribute to the

near-boundary diapycnal volume flux in the SML ESML.

In most of this paper it is convenient to ignore the in-

fluence of the geothermal heat flux from the discussion,

but before doing so we will first estimate its magnitude.

In a ground-breaking study of the effect of the geo-

thermal heat flux on the abyssal circulation, Emile-Geay

and Madec (2009) showed that the geothermal heat flux

supplied heat to the BBL equivalent to what would be

provided by a diapycnal diffusivity of potential tem-

perature of approximately 1.2 3 1024m2 s21 immedi-

ately above the BBL. Bearing in mind that the stability

ratioRr 5 (aQz)/(bSAz
) is approximately 2 in the abyssal

ocean, this observation of Emile-Geay and Madec

(2009) means that we may approximate G/bz in Eq. (2)

by a vertical diffusivity of buoyancy of approximately

2 3 1024m2 s21. Taking the perimeter of the global

ocean at a depth of 2000m to be 5 3 107m and the av-

erage value of 1/tanu to be 400 means that the contri-

bution of the geothermal buoyancy flux to the diapycnal

volume transport is

ð
G

b
z

1

tanu
dc’ 4 x 106 m3 s21 5 4 Sv, (5)

an estimate that is consistent with that deduced by de

Lavergne et al. (2016). The contribution of geothermal

heating to EBBL is expected to grow from zero at the very

densest buoyancy to no more than about 4 Sv (1 Sv [
106m3 s21) at a buoyancy appropriate to an average depth
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of 2000m. In the rest of this paper we will ignore the

contribution of the geothermal heat flux to the abyssal

circulation; if the geothermal heat flux were to be in-

cluded, the real diapycnal transports EBBL (and Enet) would

be larger by amounts that vary from zero to about 4Sv

from the deepest part of the ocean up to 2000m.

Not all of the energy that arises from the internal tide

flowing over rough topography is dissipated locally, and

it must be recognized that there is a background internal

gravity wave field that partakes in intermittent breaking

events. Observationally it seems that away from rough

topography the interior ocean can be regarded as

having a background diapycnal diffusivity of order

1025m2 s21, independent of height (Waterhouse et al.

2014). Taking the area of the ocean at a depth of 2000m to

be 2.53 1014m2 and the square of the buoyancy frequency

at this depth to beN25 bz’ 23 1026 s22 means that the

background diapycnal diffusivity of 1025m2 s21 contrib-

utes dF5 53 103m4 s23 to the area-integrated diapycnal

buoyancy flux F through the buoyancy surface corre-

sponding to this depth. The vertical length scale bz/bzz at

this depth is about 1000m (this can be deduced from the

slope of Fig. 3c at b’ 3.53 1023ms22, corresponding to a

depth of 2000m), and the proportional change in the area

of the ocean with buoyancy is not the dominant effect at

this height [see Fig. 10 of Ferrari et al. (2016)] so that the

contribution of the spatially constant diapycnal diffusivity

1025m2 s21 to the net diapycnal upwelling volume flux at

2000m is dEnet 5 ddF/db5 53 103m4 s23/(1000m3 23
1026 s22) 5 2.5Sv. From Eq. (2), with B0/bz being the

diapycnal diffusivity 1025m2 s21 and again taking 1/tanu

to be 400 and with the perimeter of the global ocean at a

depth of 2000m being 5 3 107m, we find that the con-

tribution of this background diapycnal diffusivity to

EBBL to be 0.2 Sv at a depth of 2000m. That is, of the

2.5 Sv of extra diapycnal upwelling at 2000m attribut-

able to the background diapycnal diffusivity 1025m2 s21,

2.3 Sv is in the ocean interior and 0.2 Sv is upwelling in

the boundary layer.

Combining the influence of geothermal heating and of

the constant interior diapycnal diffusivity of 1025m2 s21,

these two processes are estimated to give rise to a con-

tribution of up to 41 2.5Sv’ 6.5Sv to Enet of which 41
0.2Sv’ 4.2 Sv upwells as part of EBBL in the BBL and the

balance 2.3 Sv upwells in the ocean interior. In what

follows we will ignore these contributions to the abyssal

diapycnal circulation so that the real diapycnal transports

EBBL and Enet will be larger by amounts that vary from

zero (for the densest density class) to these approxi-

mate values at 2000m compared with the transports

discussed below.

In the remainder of this paper we will take

F5
ÐÐ B(b, x, y) dx dy to exclude the contribution of

the weak background diapycnal diffusivity (of order

1025 m2 s21) to the area-integrated diffusive buoy-

ancy flux on a buoyancy surface, and we take Enet

to exclude the contributions to the net upwelling

volume flux across buoyancy surfaces from both the

background diapycnal diffusivity and the geothermal

heat flux. In addition, we ignore the contribution of

cabbeling and thermobaricity to the diapycnal vol-

ume transport.

4. Relating the interior downwelling volume flux to
the area-integrated buoyancy flux

The equation for the dianeutral velocity e in the strati-

fied interior ocean can be found by taking the appropriate

linear combination of the conservation equations for

Absolute Salinity and Conservative Temperature [see

McDougall (1984) or Eq. (A.22.4) of IOC et al. (2010)].

Ignoring various terms that arise from the nonlinear

nature of the equation of state of seawater, the dia-

neutral velocity can be expressed as (subscripts denote

differentiation)

eb
z
5B

z
, or e5

B
z

b
z

5
›B
›b

����
x,y

. (6)

As explained in appendix A.22 of IOC et al. (2010), this

equation is the evolution equation for the locally ref-

erenced potential density; it is also the classic diapycnal

advection–diffusion balance. In deriving this expres-

sion, the curvature of the buoyancy surfaces in space

has been neglected, so this expression is accurate when

the buoyancy surfaces are relatively flat, such as in the

stratified ocean interior. Note that this expression for

the diapycnal velocity applies even when the flow is

unsteady, and it applies locally on any individual water

column. In Eq. (6) both Bz and bz are evaluated on a

vertical cast at constant x and y, so that the diapycnal

velocity e is the exactly vertical component of the ve-

locity that penetrates through the (possibly moving)

buoyancy surface.

We now spatially integrate this expression for the

dianeutral velocity over the buoyancy surface in the

SML, that is, over that part of the area of the buoyancy

surface that excludes the BBL, to evaluate the diapycnal

volume flux ESML (defined positive upward, so that in the

SML both e and ESML are negative) as

E
SML

5

ðð
e dx dy5

ðð B
z
(b, x, y)

b
z

dx dy. (7)

It is now helpful to assume that the vertical shape of

the turbulent buoyancy flux profile is exponential (see
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Fig. 1), so that the variation of B along the area of the

buoyancy surface b in the stratified ocean interior is

given by

B(b, x, y)5B
0
(x, y) exp

�
2
z0

d

�
, (8)

where the magnitude of the diffusive buoyancy flux at

the top of the BBL B0 is specified as a function of lat-

itude and longitude B0(x, y), and z0 is the height of the

b buoyancy surface above the top of the turbulent BBL

at a given latitude and longitude. From Eqs. (6) and

(8), we see that the dianeutral velocity e(b, x, y) 5 Bz/bz
on buoyancy surface b at a general latitude and

longitude is

e(b, x, y)52
B
0
(x, y)

b
z
d

exp

�
2
z0

d

�
52

B(b, x, y)
b
z
d

, (9)

whose integral over the buoyancy surface in the SML is

E
SML

52

ðð B(b, x, y)
b
z
d

dx dy. (10)

In the absence of knowledge of any spatial correlation

between the variations of B(b, x, y) and bzd along the

buoyancy surface in the SML, we take the vertical scale

height d to be the fixed vertical scale d 5 500m, and we

approximate the right-hand side of Eq. (10) as

E
SML

’2
F

hb
z
id , (11)

where hbzi is the average value of bz along the whole area
of the buoyancy surface (alternatively, this area average

could be performed only in the SML). This approximation

to Eq. (10) is equivalent to ignoring any spatial correlation

between the mixing intensity B(b, x, y) and the e-folding

vertical buoyancy difference Db 5 bzd over the SML on

the buoyancy surface. If such a correlation exists, it is

probably in the sense of reducing the magnitude of the

right-hand side of Eq. (11) since we might expect that the

largest values of B(b, x, y) on the SML would occur where

the buoyancy surface is shallowest and bz is probably also

the largest. We note in passing that if we were justified in

assuming that the vertical decrease in the magnitude of

the buoyancy flux was an exponential function of

buoyancy [rather than of height as in Eq. (8) above] so

that B(b, x, y) 5 B0(x, y) exp[2(b 2 b0)/Db], where the

e-folding buoyancy scale Db is constant along the buoyancy

surface, then ESML would be given by ESML 52F/Db so that
ESML and Fwould simply be proportional to each other. But

we are not aware of any observational support for the

e-folding buoyancy scale Db being spatially invariant, so we

follow the conventional practice of adopting an e-folding

scale in height, that is, we retain the form equation (8).

If the magnitude of the buoyancy flux B(b, x, y) of

Eq. (8) were taken to be a linear function of z0, varying
from B0(x, y) at z

0 5 0 to zero at z05 d , then the right-

hand side of Eq. (11) would be approximately doubled

so that ESML 5 2 2F/(,bz.d).

This rather direct relationship, Eq. (11), between the

downwelling volume transport ESML in the SML and the

magnitude of the area-integrated interior buoyancy flux

F is a direct result of the relationship between the dia-

pycnal velocity and the diffusive buoyancy flux of Eqs.

(6) and (8), namely, ebz 5 Bz 5 2B/d. Note that the

vertical scale height d in the above equations can be

defined as d [ 2B/Bz, rather than having to assume an

exponential vertical profile, and similar results would

follow. Thus, the choice of an exponential profile is one

of analytical convenience.

Just like our expressions (2) and (3) for the net di-

apycnal volume flux in the BBL, the net diapycnal

volume flux [Eq. (11)] for the SML near-boundary

diapycnal volume flux applies to a local area integral

along a buoyancy surface, and it applies even when the

flow is unsteady with vertical heaving motion and

with a mean epineutral transport between pairs of

buoyancy surfaces.

5. The diapycnal upwelling in the BBL as a vertical
integral of the net global diapycnal upwelling

Recalling that we are ignoring the geothermal heat

flux, the complete buoyancy budget [Eq. (3)] Enet 5 dF/db

can be integrated with respect to buoyancy,

F5

ðb
bmin

E
net

db0 , (12)

yielding a convenient expression for the area-integrated

diffusive buoyancy budget F, where Enet 5 EBBL 1 ESML is

the net diapycnal upwelling transport through both the

BBL and the SML, and the definite integral is performed

from the very densest water with buoyancy bmin. In

appendix B, it is shown that this expression for F [Eq.

(12)] is equivalent to the volume-integrated buoyancy

budget [Eq. (B1)] for the volume that is less buoyant than

the buoyancy value b in the global ocean in steady state.

Substituting this expression for F into Eq. (11) gives

E
SML

’2
1

hb
z
id
ðb
bmin

E
net

db0 . (13)

The lower limit of the integration here is the least

buoyant (densest) water in the World Ocean, where
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F (and hence ESML) is zero since the area of this densest

surface tends to zero.

Equation (13) is the key result of this paper; it states

that knowledge in the abyssal ocean of (i) the stratifi-

cation hbzi, (ii) the vertical e-folding length scale of the

diffusive buoyancy flux d, and (iii) the net upwelling of

AABW as a function of buoyancy Enet(b) yields an es-

timate of the sinking diapycnal volume flux ESML in the

ocean interior.

The diapycnal volume flux in the BBL follows from

Eq. (13) and the volume conservation equation

Enet 5 EBBL 1 ESML, so that

E
BBL

’ E
net

1
1

hb
z
id
ðb
bmin

E
net

db0 . (14)

As an initial demonstration of these equations, in this

paragraph we will assume that the net upwelling volume

flux Enet is independent of height (buoyancy) in the abyss

and define buoyancy (m s22) with respect to a neutral

density value of 28.3 kgm23 as

b5 0:01(28:32 g), (15)

where g is neutral density (kgm23) (Jackett and

McDougall 1997). We will assume that the buoyancy

value bmin 5 0m s22 characterizes the densest water in

the World Ocean. At a depth of 2500m, ocean atlases

show that g ’ 28.05 kgm23, b ’ 2.5 3 1023m s22, bz ’
1026 s22, and taking d to be 500m, Eqs. (13) and (14)

yield ESML ’25Enet and EBBL ’ 6Enet. In this way, if Enet

were say 18Sv then the diapycnal transport in the BBL

would be about 108Sv while the downwelling in the

interior SML would be 90 Sv.

If instead of assuming that Enet is independent of

height (buoyancy) in the abyss, we take it to be a linearly

increasing function of buoyancy as suggested by the

model studies of Ferrari et al. (2016), then the above

ratio of ESML to Enet becomes ESML ’ 22.5Enet, closer to

the values of approximately21.5 seen in Fig. 7 of Ferrari

et al. (2016). The remaining discrepancy could be due to

themodel runs having a larger stratification hbzi than the
observations or due to the correlation along isopycnals

in the SML between the mixing intensity B(b, x, y) and
the vertical stratification bz in Eq. (10). The ratio

jESMLj/Enet in Fig. 9 of Ferrari et al. (2016) is based on

applying the Nikurashin and Ferrari (2013) estimate of

mixing induced by breaking topographic waves and is

slightly larger at about jESMLj/Enet ’ 2 (and hence

EBBL/Enet ’ 3) in the abyss.

In an attempt to be a little more oceanographically

realistic, we have constructed a specific function of Enet

as a function of buoyancy based on Fig. 2a of Lumpkin

and Speer (2007):

E
net

5C

�
12

b

B

��
12 exp

�
2
b

A

��
, (16)

where C 5 25.7 3 106m3 s21, B 5 7 3 1023m s22, and

A 5 6.8 3 1024m s22 [and using the relationship be-

tween buoyancy and neutral density is given by Eq.

(15)]. This function has Enet equal to zero at bmin 5
0ms22 and rises to a maximum value of Enet 5 18Sv at

b 5 1.5 3 1023m s22, which corresponds to a depth of

approximately 3000m. This functional form [Eq. (16)]

for Enet(b) is illustrated in Fig. 3a, and its integral

F5
Ð b
0
Enet db

0 is shown in Fig. 3b. The next panel in

Fig. 3 shows the reciprocal of the area-averaged values

of hbzi as a function of b using the hydrographic data of

Gouretski and Koltermann (2004), which we have la-

beled with neutral density g. Figure 3d shows the mag-

nitude of the right-hand side of Eq. (13) jESMLj, obtained
bymultiplying Figs. 3b and 3c and dividing by d5 500m.

Also shown in Fig. 3d is EBBL 5 Enet 1 jESMLj and Enet

itself. The ratios EBBL/Enet and jESMLj/Enet are shown in

Fig. 3e. The horizontal b axis in Fig. 3 ranges from zero up

to 53 1023ms22 but the upper limit of the abyssal ocean,

corresponding to a depth of;2000m, is at approximately

b 5 3.5 3 1023ms22 (g ’ 27.95kgm23).

From Fig. 3 we see that while we have taken the

maximum value of the net upward diapycnal transport

to be 18 Sv, the maximum diapycnal upwelling in the

BBL is 103 Sv and the downwelling in the interior SML

is as large as 86 Sv. According to our discussion near the

end of section 3, the inclusion of (i) geothermal heating

and (ii) weak interior mixing with a diapycnal diffusivity

of 1025m2 s21 adds a transport that increases from zero

at the seafloor to 4.2 Sv at 2000m (g ’ 27.95 kgm23 and

b 5 3.5 3 1023m s22) to EBBL. The corresponding

change to ESML increases from zero at the seafloor to

2.3 Sv at 2000m, thus making ESML slightly less negative.

It is clear that while both geothermal heating and weak

background interior diffusion make an appreciable

contribution to the net transport Enet (of up to 35%),

neither geothermal heating nor weak background in-

terior diffusion makes a material contribution to EBBL or

ESML individually.

In much of the abyssal ocean we have found that the

upwelling diapycnal transport in the BBL EBBL is ap-

proximately 5 times the net upwelling of AABW Enet

(Fig. 3e in the range 1023 , b , 3.5 3 1023m s22 or

27.95 , g , 28.2 kgm23, which corresponds approxi-

mately to the height range 23500 , z , 22000m).

Such a large amplification factor describing strong re-

circulation of abyssal water seems surprising, but it is

broadly consistent with the model findings of Ferrari

et al. (2016), depending mainly on how Enet varies with

buoyancy in the abyss. If in the real ocean each
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descending plume of AABW sinks all the way to the

densest part of the ocean without significant entrain-

ment or detrainment, then Enet will be independent of

buoyancy. If the sinking plumes of AABW entrain fluid

from the environment all the way to the seafloor, then

Enet will be a decreasing function of buoyancy. If, on the

other hand, the sinking plumes of AABW detrain sub-

stantially above the bottom (a la Baines 2005) or if there

are multiple sources of AABW of different densities,

then Enet will increase with buoyancy in the deepest part

of the ocean, as found in the Ferrari et al. (2016)

model study.

FIG. 3. (a) The net upwelling transport Enet of Eq. (16) as a function of buoyancy b (m s22) defined in terms of

neutral density g (kgm23) by b5 0.01(28.32 g). (b) The magnitude of the area-integrated diffusive buoyancy flux

F, as estimated as the buoyancy integral F5
Ð b
0
Enet db

0 of (a). (c) The reciprocal of the area-averaged values of hbzi
as a function of b from the hydrographic data of Gouretski and Koltermann (2004). (d) The diapycnal volume

transport jESMLj evaluated from Eq. (13) as essentially the product of panels (b) and (c). Also shown are EBBL from

Eq. (14), and Enet is repeated from (a). (e) The ratios EBBL/Enet and jESMLj/Enet as a function of buoyancy.
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What aspect of our development could lead to an

overestimate of this BBL upwelling amplification ratio

EBBL/Enet? We see two possibilities. First, it is possible

that the assumed vertical e-folding scale d5 500m is too

small. The second uncertainty is the possible correlation

along isopycnals in the SML between the magnitude of the

buoyancy flux per unit area B(b, x, y) and the e-folding

vertical buoyancy difference Db 5 bzd in Eq. (10).

The strong upwelling (of up to 100 Sv) in the BBL in

the abyssal ocean, being approximately 5 times the net

upwelling of ABBW, is confined to the turbulent

boundary layer whose vertical extent is h and whose

horizontal extent is h/tanu. With h ’ 50m and with

tanu ’ 1/400, this horizontal distance over which the

very strong upwelling of;100 Sv occurs is no wider than

20 km or about 0.28 of longitude or latitude, as is

sketched in Fig. 4.

The strong diapycnal downwelling (of as much as

86 Sv) is confined to the stratified ocean interior that is

mostly between h and 2d 1 h above the seafloor. This

region extends from h/tanu to (2d 1 h)/tanu away from

the continental boundaries. The width of this horizontal

region is 2d/tanu, and with d ’ 500m and tanu ’ 1/400,

this horizontal distance over which the strong down-

welling occurs is no wider than 400 km or 48 of longitude
or latitude, with the magnitude of the downwelling ve-

locity decreasing away from the boundary toward the

ocean interior.

What is the magnitude of the near-boundary dia-

pycnal diffusivity needed to upwell ;100 Sv through

isopycnals in the BBL? From Eq. (2), we see that

E
BBL

5

ð B
0

b
z

1

tanu
dc5

ð
D

0

tanu
dc , (17)

where we have ignored the contribution of the geo-

thermal heat flux to EBBL, and we have introduced the

diapycnal diffusivity D0 5 B0 /bz in the stratified ocean

just above the BBL. Taking the perimeter of the global

ocean at this depth to be 53 107m and the average value

of 1/tanu to be 400 means that in order to upwell

EBBL 5 100 Sv in the BBL requires the turbulent diffu-

sivity immediately above the BBL to be approximately

D0 ’ 5 3 1023m2 s21. This is a large diapycnal diffu-

sivity, especially given that it represents the average

value along an in-crop line, thus requiring even larger

values in the locations where the mixing intensity is

largest (near rough topography). The required dia-

pycnal diffusivity would be reduced if the e-folding

vertical length scale is significantly greater than 500m or

if there is a significant correlation [see Eq. (10)] between

the mixing intensity B(b, x, y) and the vertical stratifi-

cation bz along buoyancy surfaces.

With O(100) Sv of upwelling in the BBL and the al-

most balancing downwelling in the SML, the average

vertical component of the diapycnal velocities would be

O(1024) and O(25 3 1026)m s21, respectively, in the

BBL and SML based on the perimeter of the global

ocean being 5 3 107m and the appropriate horizontal

widths of the BBL and SML being 20 and 400 km,

respectively.

The physical process that causes both the diapycnal

volume fluxes EBBL and ESML is the turbulent diapycnal

diffusive buoyancy flux [see Eqs. (2)–(4)], while Eq.

(13) is diagnostic in nature since it is written in terms of

the net diapycnal upwelling rate Enet rather than in

terms of the diffusive buoyancy flux. This diagnostic

equation has made use of the steady-state buoyancy

budget, which requires the interior density stratifica-

tion to be consistent with the area-integrated turbulent

diapycnal buoyancy flux F5
Ð b
0
Enet db

0 and its de-

rivative dF/db. The use of this overall buoyancy budget

in the expressions for the diapycnal volume fluxes is the

key simplifying feature that has led to Eq. (13) and the

results of Fig. 3. Because of this use of F in terms of Enet,

we have not needed to specify the processes that con-

tribute to the area-integrated diffusive buoyancy flux

or its buoyancy derivative dF/db. This variation of the

magnitude of the area-integrated diffusive buoyancy

flux with buoyancy can be due to (i) the vertical vari-

ation of the area available for mixing and/or (ii) it can

be due to the values of B0 at the top of the BBL varying

vertically with buoyancy along the sloping seafloor. In

the following sections we will discuss some specific

geometries in which we can readily calculate F and

dF/db, thereby evaluating all three diapycnal trans-

ports Enet, ESML, and EBBL.

In the following four sections we move beyond the

diagnostic relationships [Eqs. (13) and (14)] and derive

expressions for the upwelling and downwelling volume

fluxes in terms of the mixing intensity B0 in oceans of

different geometry.

6. A two-dimensional global ocean

The first example we consider is where the mixing

occurs on a continental boundary that is two-dimensional

in the sense that the length of the perimeter where an

isopycnal intersects the continent is constant, that is, it is

the same length over a range of densities.We also restrict

attention to the case where the slope of the sea floor tanu

is constant. In this case we may simplify the expressions

(1) and (4) for F and ESML, respectively, and we are able

to show that the mixing activity just above the BBLmust

increase with buoyancy in order to achieve a net positive

upwelling.
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In this two-dimensional situation we take the x co-

ordinate to be in the horizontal direction, and y is the

coordinate into the page, so to speak; in Fig. 2 we may

take x to be to the right and y into the page. The mag-

nitude of the buoyancy flux at the top of the BBL can be

expressed as a function of latitude and longitude B0(x, y)

or as a function B0(b, y) of buoyancy and the distance y

into the page along the boundary at the top of the tur-

bulent boundary layer. The value ofB0(x, y) at a distance x

from the point a on Fig. 2 is now expressed as the first two

terms in a Taylor series expansion about point awhere the

buoyancy has the value b0 so that (with z0 being the height
above the top of the turbulent boundary layer at a given

horizontal location and noting that z0 5 x tanu)

B
0
(x, y)’B

0
(b

0
, y)2 (B

0
)
b
b
z
z0

5B
0
(b

0
, y)2 (B

0
)
b
b
z
x tanu . (18)

The magnitude of the buoyancy flux at a general loca-

tion on the b buoyancy surface is

B(b, x, y)’ [B
0
(b

0
, y)2 (B

0
)
b
b
z
x tanu] exp

�
2
z0

d

�
, (19)

while along the isopycnal surface the area-integrated

value of B is given by

F5

ðð
B dx dy

5

ðð
[B

0
2 (B

0
)
b
b
z
x tanu] exp

�
2
x tanu

d

�
dx dy , (20)

where B0(b0, y) has been replaced by B0 for notational

convenience.

We now turn our attention to forming the expression

for the downwelling volume transport across the interior

part of the isopycnal ESML. The dianeutral velocity on an

isopycnal that is in the stratified ocean interior is [from

Eq. (6), i.e., ebz 5 Bz and using Eq. (19)]

e(b, x, y)52
[B

0
2 (B

0
)
b
b
z
x tanu]

b
z
d

exp

�
2
z0

d

�
, (21)

and taking the area integral of this on the isopycnal gives

E
SML

52

ðð" B
0

b
z
d
2 (B

0
)
b

x tanu

d

#
exp

�
2
x tanu

d

�
dx dy .

(22)

Taking bzd to be constant over the isopycnal and then

comparing Eqs. (20) and (22) confirms our pre-

viously derived relationship [Eq. (11)], namely, that

ESML 5 2F/(bzd).

In this two-dimensional geometry, the x integration

can be performed independently of the y integra-

tion, and integrating over x from zero to infinity and

using the two integral relations
Ð ‘
0 exp(2s) ds5 1 andÐ ‘

0
s exp(2s) ds5 1, we find [from Eqs. (20) and (22)] F

and ESML to be

F5

ð
B
0

d

tanu
dy2

ð
(B

0
)
b
b
z
d

d

tanu
dy, 2-dim, (23)

and

E
SML

52

ð B
0

b
z

1

tanu
dy1

ð
(B

0
)
b

d

tanu
dy . 2-dim. (24)

The effective horizontal area on an isopycnal in this two-

dimensional situation where the diapycnal diffusion is

significant is proportional to
Ð
(d/tanu) dy, and since

d/tanu is taken to be independent of buoyancy, the

area of significant diffusive buoyancy flux is also in-

dependent of buoyancy, that is, constant with height.

Note that the total area of the isopycnal will increase

with height whenever the ocean does not have vertical

sidewalls, but what is relevant for the buoyancy budget is

the area of active mixing in the SML and whether that

area increases with buoyancy or not.

FIG. 4. Sketch of the spatial distribution of the intense up-

welling hard up against the boundary (arrow point in circle)

and downwelling (the crossed feathers at the trailing end of

the arrow inside the circles) in a canonical Northern Hemi-

sphere ocean. The interior of each isopycnal has no dianeutral

motion while there is downwelling only within approxi-

mately 48 (;400 km) of the boundary and very strong upwelling

within just 0.28 (;20 km) of the continental boundaries. With

O(100) Sv of upwelling in the BBL and downwelling in the SML,

the average vertical component of the diapycnal velocities

would beO(1024) andO(253 1026) m s21 in the BBL and SML,

respectively.
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In this two-dimensional situation we are able to be quite

specific about the spatial variation of the diffusive buoy-

ancy flux that is needed to achieve net upwelling Enet. The

first part of the right-hand side of Eq. (24) is equal

to2EBBL [see the general expression for EBBL of Eq. (2)]

so that in this two-dimensional situation we find from

Eq. (24) that Enet is given by (using Enet 5 EBBL 1 ESML)

E
net

5

ð
(B

0
)
b

d

tanu
dy. 2-dim. (25)

This shows that in order for upwelling of bottom water

to be possible in this two-dimensional situation, the mag-

nitude of the diffusive buoyancy flux at the top of the

boundary layer B0 must increase with buoyancy (or height).

That is, in this two-dimensional situation in which both the

distance into the page and the sea floor slope tanu are in-

dependent of height, then (B0)b being positive is the only

way that the magnitude of the diffusive buoyancy flux F can

increase with buoyancy, thus allowing dF/db 5 Enet to be

positive. One way that (B0)b can be positive is if the near-

boundary turbulent diffusivityD0 is constant and the vertical

stratification bz increases in the vertical, that is, if bzz . 0.

The two-dimensional geometry of this section, in

which properties are independent of the coordinate into

the page, is the one considered by Thorpe (1987) and

Garrett (1990, 2001). These authors also imposed the

diffusive buoyancy flux to be the same across each iso-

pycnal [in our terminology, (B0)b 5 0], and hence our

result that there is no net upwelling in this situation is

consistent with their result that the net upwelling per

unit distance into the page is D‘/tanu, since in our case

the diffusivity far from the boundary D‘ is zero.

7. A conical global ocean with constant B0

Next we consider a different example where (i) the

magnitude of the buoyancy flux per unit area at the top

of the BBL B0(x, y) is independent of latitude and

longitude so that it is simply the constant value B0 and

(B0)b 5 0, (ii) the ocean topography is a cone whose

surface of revolution makes a constant angle u to the

horizontal, and (iii) the interior stratification bz is

constant along each isopycnal. The upward flow in the

BBL is still given by Eq. (2), which in this geometry is

E
BBL

5

ð B
0

b
z

1

tanu
dc5 2pB

0

R

b
z
tanu

conical ocean,

(26)

where R is the radius of the cone at the top of the BBL

on this buoyancy surface. The area-integrated value of B
on the isopycnal is

F5 2pB
0

ðR
0

r exp

�
2
(R2 r) tanu

d

�
dr

5 2pB
0

�
d

tanu

�2�
R tanu

d
2 11 exp

�
2
R tanu

d

��

conical ocean,

(27)

and the value of ESML is2F/(bzd). The net upwelling Enet

is dF/db, which can be evaluated by differentiating Eq.

(27) using dF/db 5 FRRz/bz and using the geometry of

the conical ocean, which means that Rz 5 1/tanu. This

reasoning leads to

E
net

5
dF

db
5 2pB

0

d

b
z
(tanu)2

3

�
12 exp

�
2
R tanu

d

��
conical ocean. (28)

This value of Enet agreeswith calculating it as EBBL 1 ESML

using the expressions above for EBBL and ESML:

This example shows that when the area of the SML

region increases with buoyancy, net upwelling can occur

even when B0 is constant. The value of the volume flux

ratio EBBL/Enet for this conical ocean is given by the ratio

of Eqs. (26) and (28), namely,

E
BBL

E
net

5
R tanu/d

[12 exp(2R tanu/d)]
, conical ocean, (29)

and if the radiusR is significantly larger than d/tanu then

this equation can be approximated as EBBL/Enet ’
R tanu/d. In this limit of R� d/tanu, EBBL is much larger

than Enet, and [fromEq. (28)] the net upwelling of bottom

water Enet is independent of the radius R of the cone and

so is independent of buoyancy. That is, the same net

volume flux Enet upwells through all height levels of the

conical ocean. By contrast, both EBBL and jESMLj increase
linearly with R, that is, increase linearly with height (see

Fig. 5).

8. A generic seamount

We return here to consider the nonglobal, nonsteady

situation of Fig. 2 in the specific case of a seamount. We

take the key feature of a seamount to be that the mag-

nitude of the area-integrated diapycnal diffusive buoy-

ancy flux F in the vicinity of the seamount across

isopycnals that intersect the seamount is a decreasing

function of height, that is, a decreasing function of

buoyancy. That is, dF/db, 0. The reason for this is that
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for a surface of revolution about the vertical axis, the

interior mixing mainly occurs on an annulus of width

2d/tanu whose radius decreases as the top of the sea-

mount is approached. If B0 or 1/tanu increased strongly

with buoyancy, then dF/db could still be positive in this

depth range for a seamount, but we consider that this

would not occur over a significant depth range on a typ-

ical seamount. FromEq. (3), EBBL 1 ESML 5 Enet 5 dF/db,

which applies not just globally but also to a local

region such as the region near a seamount so that

we deduce that the net diapycnal volume flux Enet

in the vicinity of a seamount is expected to be down-

ward, as first pointed out by McDougall (1989). Hence,

given a certain volume flux of AABW EBW that needs

to be upwelled across isopycnals, the continen-

tal boundary regions (including both the BBL and

SML regions) must transport more than EBW upward

across isopycnals simply to compensate for the net

downward motion of that part of the ocean that sur-

rounds those seamounts that do not rise above a depth

of 2000m.

The buoyancy budget inside the BBL implies that

the flow along this BBL EBBL must be upward, even in

the seamount case; that is, our general expression for

EBBL [Eq. (2)] applies to the seamount situation. But

the downward diapycnal flow in the stratified interior

ESML is generally larger in magnitude than EBBL for a

seamount. We now examine the special case of a

conical seamount with a constant diffusive buoyancy

flux just above the BBL.

9. A conical seamount with constant B0

Here, we consider a conical seamount where again (i)

the mixing intensity at the top of the BBL is simply the

constant value B0, (ii) the seamount topography is a

cone whose surface of revolutionmakes a constant angle

u to the horizontal, and (iii) the interior stratification bz
is constant along each isopycnal. The upward flow in the

turbulent boundary layer is given by Eq. (2), which in

this geometry is the same as for the conical global ocean

[Eq. (26)], namely,

E
BBL

5

ð B
0

b
z

1

tanu
dc

5 2pB
0

R

b
z
tanu

, conical seamount, (30)

where R is the radius of the cone at the top of the tur-

bulent boundary layer on this buoyancy surface, with R

decreasing linearly with buoyancy. The area-integrated

value of B on an isopycnal is

F5 2pB
0

ð‘
R

r exp

�
2
(r2R) tanu

d

�
dr

5 2pB
0

Rd

tanu
1 2pB

0

�
d

tanu

�2

, conical seamount,

(31)

and the value of ESML is 2F/(dbz). The net upwelling of

water in the vicinity of the seamount Enet is dF/db,

which can be evaluated by differentiating Eq. (31) using

dF/db 5 FRRz/bz and using the geometry of the conical

seamount, which means that Rz 5 21/tanu. This rea-

soning leads to the following expression for the net dia-

pycnal volume flux in the vicinity of the seamount:

E
net

5
dF

db
522pB

0

d

b
z
(tanu)2

conical seamount. (32)

This value of Enet agreeswith calculating it as EBBL 1 ESML

using the expressions above for EBBL and ESML.

This conical seamount example shows that when the

area of the interior region of mixing decreases with

buoyancy, net downwelling, Enet , 0, occurs when B0 is

constant. The ratio of the upwelling EBBL in the BBL

surrounding the seamount to Enet for this conical sea-

mount is given by the ratio of Eqs. (30) and (32), namely,

E
BBL

E
net

52
R tanu

d
conical seamount. (33)

This ratio has the samemagnitude but opposite sign to the

value R tanu/d of the conical ocean case (which applies in

the limit R � tanu/d). The net downwelling volume flux

Enet in the vicinity of the seamount is independent of the

radius R of the cone [see Eq. (32)] and so is independent

of buoyancy. That is, the same net volume flux Enet

downwells through all height levels of the cone. By con-

trast, both EBBL and jESMLj increase linearly withR, that is,
linearly with depth. This is illustrated in Fig. 6a.

Notice fromEq. (32) that the net diapycnal volume flux

jEnetj is proportional to (tanu)22 so that near the top of a

realistic seamount (Fig. 6b) where the bottom slope is

small, jEnetj is large and will tend to decrease toward the

midheights of the seamountwhere the bottom slope is the

largest, increasing again toward the flanks (the bottom) of

the seamount where the bottom slope is again small. This

would suggest that the seamount is a source of fluid at

midheight but a sink for exterior fluid at other heights.

That is, a realistic-shaped seamount can act as both a sink

and a source of surrounding seawater at different heights,

but on average, since Enet is expected to be predominantly

negative in the region of a seamount, the surrounding

seawater is drawn toward the seamount near the top of
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the seamount and is then made less buoyant and sinks

though isopycnals.

10. Requirements for global upwelling: Scaling
arguments

The global ocean does have AABW rising through the

abyss, and this implies that the area-integrated buoyancy

flux needs to increase with buoyancy (since Enet 5 dF/db),

and here we ask what is required of the mixing intensity

and the bathymetry in order to ensure that dF/db. 0. Since

F is always positive, we examine that ratio (F21)dF/db. The

area of active mixing on each isopycnal scales as the

horizontal width of the BBL and SML, d/tanu, times

the perimeter L of the topography (see Fig. 2). Hence,

F ; B0Ld/tanu so that (F21)dF/db scales as

1

F

dF

db
;

(B
0
)
b

B
0

1
L

b

L
2

(tanu)
b

tanu
1

d
b

d
. (34)

This indicates that there are four different ways that net

upwelling can be enabled, namely, (i) if the magnitude

of the buoyancy flux at the top of the BBL B0 is an in-

creasing function of buoyancy, (ii) if the length (perim-

eter) L is an increasing function of buoyancy, (iii) if the

slope of the seafloor tanu is a decreasing function of

buoyancy, and (iv) if the vertical length scale d is an

increasing function of buoyancy. The influence of the

first three of these factors have been illustrated in the

previous sections. This argument is essentially a linear-

ization of vertical changes in the full expression (1) for

the area-integrated buoyancy flux, but nevertheless, it

seems useful.

11. Volume-integrated dissipation

Starting with Munk and Wunsch (1998), the strength

of the overturning circulation has been related to the

volume-integrated buoyancy flux generated by turbu-

lent mixing. Here, we investigate whether the strong

diapycnal upwelling along the BBL and the nearly

equally strong diapycnal downwelling in the SML have

important implications for the energy budget of the net

overturning circulation.

The volume-integrated value of B in the global ocean

below 2000m is calculated using the definition [Eq. (1)]

of F, which is the area integral of B along an isopycnal,

excluding regions of dense water formation:

G5

ððð
B dx dy dz5

ððð B
b
z

dx dy db00

’

ð
1

hb
z
i F db00 5

ð
1

hb
z
i
ðb00
0

E
net

db0 db00 , (35)

where the middle equality is approximate because it has

assumed that bz is uncorrelated with B on the buoyancy

surface, and the last step has used the relationship

F5
Ð b
0
Enet db

0 of Eq. (12). The integrand in the last part of

Eq. (35) has essentially already been calculated above,

since, from Eq. (13), we have hbzi21Ð b
0
Enet db

0 5 jESMLjd,
and we have plotted jESMLj in Fig. 3d. Hence, the volume

integral of the magnitude of the diffusive buoyancy flux

G over the abyssal ocean up to a depth of ;2000m is

equivalent to the area under the jESMLj curve in Fig. 3d

from b5 0 up to b5 3.53 1023m s22, multiplied by d5
500m. Performing this integral gives G to be approxi-

mately 108m5 s23, and this scales as EnetDbDz, where we

FIG. 5. Sketch of the conical ocean with a constant value of B0 at the top of the turbulent

boundary layer. The upward diapycnal flow in the turbulent boundary layer EBBL increases with

height while the downward diapycnal flow in the stratified near-seamount interior ESML also

increases in magnitude with height. The diapycnal velocities are independent of height in both

the BBL and the SML (if bz is constant). The net upwelling Enet in the abyssal ocean is balanced

by a sinking plume of AABW that is not shown in the sketch.
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use a typical value of Enet ’ 13 Sv 5 13 3 106m3 s21,

Db 5 3.5 3 10232 ms22, and Dz 5 2300m.

To arrive at the volume-integrated dissipation of tur-

bulent kinetic energy, (i) this interior volume-integrated

diffusive flux of buoyancymust be converted into volume-

integrated dissipation by dividing by the mixing efficiency

G for which 0.2 is an appropriate value for the stratified

interior, obtaining the volume-integrated dissipation of

0.5 TW (aftermultiplyingG/0.2 by 103kgm23), and (ii) the

dissipation in the BBL must be added. With the vertical

structure ofB5G« of Fig. 1 inmind, the depth integration

of « above the BBL is then B0d/0.2, and if we assume that

« is independent of heightwithin theBBL, then the estimate

based on Eq. (35) (which is G21 ’ 5 times this equation)

must bemultipliedby the ratio (11 h/d)’ 11 50/5005 1.1.

Moremeasurements of « in theBBLwould be needed if this

estimate was to be refined.

This conclusion from this analysis of the total amount of

dissipation is that it is independent of the height scales h

and d, and it is also independent of the bottom slope as

given by tanu but rather scales as EnetDbDz. So there seems

tobenoenergetic implicationsof this near-boundarymixing

idea. That is, there is no energetic implication of the

realization that there is a lot of interior downwelling and a

lot of upwelling in the continental boundary layers. The same

energy would be required to upwell a given net volume flux

Enet through a buoyancy difference Db and a height differ-

ence Dz no matter whether the upwelling was occurring

mainly in the ocean interior (with Bz. 0 and ESML . 0 and

perhaps even with vertical sidewalls) or whether there are

sloping sidewalls and a large BBL amplification factor

EBBL/Enet, as seems to be the case in the real ocean.

The reason for this insensitivity of the gravitational

potential energy budget to the large recirculation of

diapycnal volume flux, 0.5(EBBL 1 jESMLj), is that this

large recirculating volume flux enters the gravitational

potential energy budget multiplied by the difference

between the buoyancy in the BBL and in the SML at

constant height, and this buoyancy difference is tiny.

12. Discussion

a. The bottom intensification of mixing versus the
one-dimensional view

The simple, one-dimensional, upwelling–diffusion

balance in the ocean interior with a constant diapycnal

FIG. 6. (a) Sketch of a conical seamount with a constant value of B0 at the top of the turbulent

boundary layer. Theupward diapycnal flow in the turbulent boundary layer EBBL decreases to zero

at the top of the seamount, while the downward diapycnal flow in the stratified near-seamount

interior ESML also decreases inmagnitudewith height. The diapycnal velocities are independent of

height in both theBBLand the SML (ifbz is constant). (b)Amore realistic (nonconical) seamount

cross section is sketched, again with a constant value of B0. The dependence of the net diapycnal

volume flux Enet 5 EBBL 1 ESML (which is negative for a conical seamount) on the bottom slope

tanu may lead to the smallest values of jEnetj being found at middepth where the bottom slope

tanu is largest, with larger magnitudes of Enet both above and below this middepth.
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diffusivity implies that the magnitude of the buoyancy

flux increases with height, whereas observations of the

dissipation of turbulent kinetic energy in the abyssal

ocean show the opposite. That is, observations show that

the dissipation increases toward the ocean floor, espe-

cially where the bottom topography is rough. In this

paper, we have included this bottom intensification of

the diffusive buoyancy flux, and we have assumed a

linear equation of state, thus ignoring the diapycnal

downwelling due to thermobaricity and cabbeling.

b. Bottom slope and perimeter: Balancing influences?

A cross section through an ocean basin is sketched in

Fig. 7 in which the bottom slope tanu decreases with

depth. If the ocean were two-dimensional (i.e., in-

dependent of distance into the page of Fig. 7), the area of

active diapycnal near-boundary mixing increases pro-

portionally to d/tanu, implying that if B0(x, y) were a

constant value then the area-integrated buoyancy flux F

would tend to decrease with height so that dF/db 5 Enet

would be negative. Countering this tendency in a more

realistic three-dimensional situation is the fact that the

perimeter (or circumference) around the boundary of

the ocean on each buoyancy surface is an increasing

function of height (and buoyancy) because ocean basins

are better approximated as being circular than being

two-dimensional. If in fact the seafloor in Fig. 7 were the

lower part of a sphere, then the product of the perimeter

and the horizontal distance d/tanu would be constant,

independent of the height of the horizontal cut

through the sphere. In this situation a constant value of

B0(x, y)5 B0 would give dF/db5 Enet 5 0, which is not a

valid steady-state solution for the abyss. If on the other

hand, the side boundaries of the three-dimensional ocean

have a more or less constant slope, then the geometry

more closely approximates the conical ocean of section 7

and net upwelling would occur even if B0(x, y) 5 B0 is

constant. This discussion emphasizes the sensitivity of the

net diapycnal volume flux to the details of the area

available for active mixing in the SML. It is fascinating

that in this SML region the diapycnal volume transport

is downward, but the net upward diapycnal transport

depends sensitively on the vertical variation of the

SML area.

c. Themuch increased BBL transport with the bottom
intensification of mixing

The large diapycnal upwelling transport in the BBL

predicted by this study is here contrasted with what

would be expected without the bottom intensification of

mixing intensity. Consider a conical ocean as in section 7

but nowwithout the bottom intensification ofmixing. As

before we assume that the stratification bz is constant

along each isopycnal, but it can vary from one isopycnal

to another in the vertical. The area-integrated buoy-

ancy flux is F 5 pR2Dbz, where we will allow the dia-

pycnal diffusivity D to be a function of buoyancy. The

diapycnal transport in the BBL is given by Eqs. (2) or

(26), namely,

E
BBL

5 2pR
D

tanu
, conical ocean, interior mixing,

(37)

while the net diapycnal upwelling is given by (usingRz5
1/tanu)

FIG. 7. Sketch of a cross section through an ocean basin whose bottom slope decreases

with depth. The length in this plane on which significant diapycnal mixing occurs is

proportional to d/tanu, and this is shown increasing with depth (d is constant in

this figure).
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The ratio EBBL/Enet is then

E
BBL

E
net

5

 
11 0:5R tanu

D
z

D
1 0:5R tanu

b
zz

b
z

!21

.

conical ocean, interior mixing (39)

It is not clear what is an appropriate value to take for R

in the abyssal ocean, so we will consider two values.

With R ’ L/(2p) ’ (5 3 107m)/(2p) ’ 107m, tanu ’
40021, and assuming the inverse vertical length scale

Dz/D 1 bzz/bz to be dominated by bzz/bz of about

(1000m)21, we find that EBBL/Enet 5 (11 12.5)21, im-

plying that only 7.4% of the net diapycnal upwell-

ing occurs in the BBL. Taking R ’ 106m gives

EBBL/Enet 5 (11 1.25)21 ’ 0.44, implying that 44% of

the net diapycnal upwelling occurs in the BBL. These

values for EBBL/Enet contrast with the value 5 found in

the present paper for bottom-intensified diapycnal

mixing, that is, we have found that the BBL carries

500% of the net diapycnal upwelling Enet in the

abyssal ocean. These very different estimates of the

ratio EBBL/Enet are due to the bottom intensification

of mixing activity in the present case. By contrast,

when the diapycnal mixing is assumed to occur uni-

formly along density surfaces, the whole area of

the isopycnal contributes to the diapycnal diffusive

buoyancy flux.

d. The case where F is depth independent

The special case when the magnitude of the area-

integrated diffusive buoyancy flux F is independent of

buoyancy is here shown to be incompatible with a

global steady state. In this case, we have dF/db 5
EBBL 1 ESML 5 Enet 5 0 [from Eq. (3)], so that the local

downwelling in the stratified interior SML is equal to

the local upwelling in the BBL. This is a perfectly ac-

ceptable balance for a localized region of mixing, but

for a globally integrated situation, having no net dia-

pycnal upwelling (Enet 5 0) is incompatible with a

steady-state solution in which there is vertical strati-

fication in the abyss since a strictly positive mean di-

apycnal volume flux Enet . 0 is needed to balance the

diffusive buoyancy flux F that enters the volume that

is bounded above by the b buoyancy surface [see

Eq. (B1) of appendix B where the volume-integrated

buoyancy budget requires that Enet be positive since

F is positive].

e. Implications for the Stommel–Arons abyssal
circulation

What are the implications of our results for the

Stommel–Arons circulation? Some of the implications

of ocean hypsometry have already been pointed out by

McDougall [1989, see his Eqs. (15)–(16) and Fig. 6

therein] and by Rhines (1993, p. 137–140 and Figs. 19

and 20 therein). These authors pointed out that if the

diapycnal upwelling is assumed to be uniformity dis-

tributed over isopycnals, then both (i) the increasing

area of isopycnals with height and (ii) entrainment into

the sinking plume of AABW induce vortex stretching in

the ocean interior of the opposite sign of Stommel–

Arons. In the present work, we have explored the im-

plications of the bottom-intensified nature of dia-

pycnal mixing, and we have shown that the effects of

this bottom intensification on the structure of the dia-

pycnal velocity varies both laterally and vertically, re-

sulting in a complex pattern of stretching and squeezing

of water columns.

Imagine an ocean basin that is roughly circular with

most of the inner area exhibiting neither diapycnal up-

welling nor downwelling but with an annulus of width of

48, exhibiting strong diapycnal downwelling of ;80Sv

and an even thinner (0.28) outer annulus right against

the continent in which there is strong upwelling of

;100 Sv. This is illustrated in Fig. 4. Within the region of

diapycnal downwelling, the downward diapycnal veloc-

ity increases in magnitude with depth, implying vertical

vortex stretching of the same sign as Stommel–Arons

(i.e., ez . 0). The full implications of this vortex

stretching clearly needs further research. Rhines’ (1993,

p. 142) very nice review ended with the phrase ‘‘pointed

study of ‘in-cropping’ is called for.’’ The present paper,

de Lavergne et al. (2016), and Ferrari et al. (2016) may

be regarded as some small steps in that direction.

f. Sensitivity of ocean models to d

In a numerical study, Oka and Niwa (2013) found

that the deep Pacific circulation was sensitive to the

choice of the vertical scale height d over which the

near-boundary diapycnal mixing varied. The sensitivity

can be explained as being due to the area of significant

diapycnal mixing on each isopycnal being proportional

to d through the horizontal length scale d/tanu (see Figs. 2b

and 7). This implies that the area-integrated diffusive

buoyancy flux F (and hence
Ð b
0Enet db

0) varies proportion-
ally with d. The same proportionality with d applies to the

magnitude of the volume-integrated buoyancy flux. If the

volume-integrated buoyancy flux were kept constant as

d was changed in a forward numerical ocean model by

making B0(x, y) (or perhaps the diapycnal eddy diffusivity)
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at the top of the turbulent boundary layer be proportional

to d21, we expect that the net overturning circulation

would be rather insensitive to the vertical e-folding

length scale d.

13. Conclusions

AWalin-like buoyancy budget has been performed on

volumes bounded by buoyancy surfaces that intersect

the seafloor. We have incorporated the observed in-

crease of diapycnal mixing intensity in the stratified in-

terior toward the seafloor; this downward increase in

mixing drives downward diapycnal advection in the

stratified fluid. We also prescribed that the buoyancy

flux becomes zero (or tomatch the geothermal heat flux)

at the bottom of a turbulent bottom boundary layer

(BBL) right above the seafloor; this downward decrease

in the magnitude of the buoyancy flux in the BBL drives

an upward diapycnal advection along sloping bottom

boundary layers. We find the following:

d The upward diapycnal volume transport in the turbu-

lent BBL is typically several times as large as the net

upwelling of AABW in the abyss.
d This implies that there is substantial cancellation be-

tween the large upwelling in the BBL and the (almost as

large) downwelling in the stratified mixing layer (SML)

that lies in the stratified ocean but is near the seafloor

where the diapycnal mixing is significant.
d The buoyancy budget for the whole volume below a

certain buoyancy surface is given by Eq. (12), which

shows that the magnitude of the area-integrated

diffusive buoyancy flux across this buoyancy surface

is equal to the integral with respect to the buoyancy of

the net diapycnal upwelling throughout the ocean

below this buoyancy surface.
d The main findings of this paper are the simple re-

lations (13) and (14) that have been used to estimate

that the volume flux upwelling in the turbulent BBLs

globally is as much as 5 times the net dianeutral

upwelling of bottom waters in the abyss and that the

near-boundary diapycnal sinking in the SML is as

much as 4 times this net upwelling. The amplification

factor EBBL/Enet was found to be between 2 and 3

in Ferrari et al. (2016), and it depends on the way

that the net dianeutral upwelling Enet varies with

height (or buoyancy) in the abyss [as can be seen in

Eq. (14)].
d Our approach has been based on the buoyancy

equation, so that the large epineutral advection and

diffusion processes do not enter or complicate our

method. While these strong epineutral processes are

invisible to our approach, they will be effective in

spreading any tracer signature of the near-boundary

mixing processes into the ocean interior.
d The circulation we find is driven by the diffusive flux of

buoyancy in the stratified interior ocean, with the

magnitude of the buoyancy flux being strongest near

the BBL. This is very different to previous boundary

mixing theories where the mixing was assumed to

originate at the boundary itself and was often mostly

very near the boundary in water that is very weakly

stratified.
d We have shown that in order to upwell 100 Sv across

isopycnals in the BBL, the turbulent diffusivity im-

mediately above the BBL must be approximately

D0’ 53 1023m2 s21 on average along the in-crop line

of a buoyancy surface. Clearly, this is a large diapycnal

diffusivity, and it remains to be seen if this will prove

to be a realistic estimate.
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APPENDIX A

Diapycnal Volume Fluxes Caused by Interior
Diffusive Buoyancy Fluxes and by Geothermal

Heating

Here, we analyze the volume and buoyancy budgets

for (i) the turbulent BBL region contained between a

pair of buoyancy surfaces in Fig. 2a and (ii) for the full

shaded volume in Fig. 2b, which contains both the BBL

and the SML in which the diapycnal mixing is signifi-

cantly nonzero. The upper buoyancy surface attracts

the label u while l stands for the lower buoyancy sur-

face. These volume-integrated buoyancy budgets are

an application of the Walin (1982) methodology, ap-

plied to the geometry of the bottom boundary and

near-boundary regions; theWalinmethodology is more

commonly applied to the outcropping of isopycnals at

the sea surface.

The epineutral advection of water into the shaded

region of Fig. 2a from the interior ocean is labeled
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QepiBBL and the conservation of volume for this region

is (without assuming it is in steady state)

(V
BBL

)
t
5 El

BBL 2 Eu
BBL 1Q

epiBBL
, (A1)

while the buoyancy budget is

1

2
(bl 1 bu)(V

BBL
)
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l 2 Eu
BBLb

u 1
1

2
(bl 1 bu)Q

epiBBL
1Fgeo 1D ,

(A2)

where D is the diffusive buoyancy flux entering at the

top of the BBL, being the area integral of the corre-

sponding nonadvective buoyancy flux per unit hori-

zontal area between points a and b (and into the page)

at the top of the BBL, B0(x, y) cosu. The buoyancy flux

entering the BBL across the seafloor Fgeo is ga times

the corresponding flux of Conservative Temperature,

so that F geo is [from appendix A.21 of IOC et al.

(2010)] the geothermal heat flux (in watts) times

ga/(rĥQ), where g is the gravitational acceleration, a is

the thermal expansion coefficient with respect to

Conservative Temperature, r is in situ density, and

ĥQ is the partial derivative of specific enthalpy with

respect to Conservative Temperature at constant Ab-

solute Salinity and pressure [see appendix A.21 of IOC

et al. (2010)]. This partial derivative is given by

(fromMcDougall 2003) ĥQ 5 c0p(T0 1 t)/(T0 1 u) (where

T0 5 273.15K, u is the potential temperature, and t is

the in situ temperature, both on the Celsius tempera-

ture scale), which varies very little from the constant

value c0p [ 3991.867 957 119 63 J kg21K21 defined by

the International Thermodynamic Equation Of Sea-

water—2010 (TEOS-10). Even at a depth of 4000m

ĥQ is different from c0p by only 0.15%; by comparison,

the uncertainty in the thermal expansion coefficient

is 61% [the rms uncertainty in the thermal expan-

sion coefficient is 0.73 3 1026 K21; see appendix

K of IOC et al. (2010)]. Hence, we take ga/(rĥQ)

to be ga/(rc0p). If the geothermal heat flux per unit

of exactly horizontal area is J Wm22, then the

geothermal buoyancy flux per unit area of sloping

seafloor is G cosu, where G is defined to be the

flux of buoyancy into the ocean per unit of exactly

horizontal area due to the geothermal heat flux:

G5 gaJ/(rc0p).

Subtracting (1/2)(bu 1 bl) times Eq. (A1) from Eq.

(A2) and taking the limit as (bu 2 bl)5 Db / 0 so that

(1/2)(El
BBL 1 Eu

BBL)/ EBBL, we find

E
BBL

Db5Fgeo 1D . (A3)

Neither the unsteadiness of the situation nor the existence

of the epineutral volume flux QepiBBL affects this simple

balance between the sumof the area-integrated geothermal

heat fluxFgeo and the diffusive (i.e., the nonadvective) area-

integrated buoyancy fluxD being balanced by the advective

volume flux EBBL of the fluid in the BBL toward less dense

water. These geothermal anddiffusive buoyancy fluxesFgeo

and D are both fluxes of buoyancy into the BBL, and they

can be expressed as the area integral of the corresponding

fluxes per unit of the sloping area between points a and b at

the top of the turbulent boundary layerGcosu and B0cosu.

The element of area integration, per unit distance into the

page of Fig. 2, is Db/(bz sinu), so that the geothermal

buoyancy flux and the diffusive buoyancy flux D are

Fgeo 5Db

ð
G

b
z

1

tanu
dc and D5Db

ð B
0

b
z

1

tanu
dc ,

(A4)

where c is the distance measured into the page of Fig. 2

along the boundary at the top of the turbulent boundary

layer. Substituting Fgeo and D from Eq. (A4) into

Eq. (A3) gives

E
BBL

5

ð
G1B

0

b
z

1

tanu
dc . (A5)

Note that this expression for the upward volume flux in

the BBL (EBBL) is independent of the vertical distance

d over which the dissipation decreases in the vertical.

This result of the buoyancy and volume budgets is an

application of the Walin (1982) approach to this control

volume, where we have ignored any diapycnal diffusion

of buoyancy along the direction of the boundary in the

BBL because the gradient of buoyancy in this direction

is so small at bz sinu and the lateral distance over which

this buoyancy flux varies is so much larger than the

thickness of the boundary layer.

In the above derivation we have taken the element of

area integration, per unit distance into the page of Fig. 2,

to be Db/(bz sinu), and this is a linearization that clearly

fails when sinu approaches zero. A more accurate deri-

vation of Eq. (A5) would stay closer to theWalin (1982)

approach (see, e.g., Marshall et al. 1999), giving

E
BBL

5
d

db

ðð
Ain(b

0,b)

(G1B
0
) dA , (A6)

where the area integral is taken over all the ocean floor

(in-crop area) in this region that has buoyancy less

than b. Again, G and B0 are the buoyancy fluxes per

unit of exactly horizontal area, and dA 5 dxdy is the el-

ement of exactly horizontal area. This convention is not
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fundamental or important; it is done simply because ocean

models have latitude and longitude as coordinates. We

will use the linearized formulation, Eq. (A5), in this paper,

but it should be understood that this is just a convenient

way of writing the exact expression, Eq. (A6), for EBBL.

Note that B0/bz in Eq. (A5) is the value of the diapycnal

diffusivity in the stratified fluid just above theBBL,D0, and

Eq. (A5) implies that the diapycnal transport in the BBL

due to diapycnal diffusion, per unit length into the page, is

proportional to this diapycnal diffusivity D0 and inversely

proportional to the slope tanu of the seafloor. This is

reminiscent of Thorpe (1987) and Garrett’s (1990)

results for their diapycnal transport streamfunction

C 5 D‘/(tanu) due to near-boundary mixing, although

their result was based on a two-dimensional ocean geom-

etry that was uniform into the page, with their buoyancy

frequency being independent of height and with the dia-

pycnal diffusivity being a function only of distance from the

sloping boundary;D‘was the diapycnal diffusivity far from

the boundary. We have made none of these assumptions

and, by contrast, our resultEq. (A5) applies only to the part

of the diapycnal transport that occurs in the BBL.

We now write budget statements for volume and

buoyancy for the volume of shaded fluid between the two

isopycnals in Fig. 2b. This control volume includes both

the fluid in the turbulent BBL and the fluid in the ocean

interior in which there is significant nonzero dissipation

(the SML). In practice, we can think of this region as

extending to a horizontal distance where the buoyancy

surface is say 2d above the top of the BBL. At that lo-

cation the magnitude of the vertical flux of buoyancy is

quite small at B0 exp(22) ’ 0.135B0, assuming an expo-

nential function of height with vertical scale height d. The

volumeV of the control volume is allowed to change with

time, and it receives the volume flux Qepi at the average

buoyancy (1/2)(bl1 bu) by epineutral advection from the

adiabatic interior ocean. The volume budget is

V
t
5 El

BBL 2 Eu
BBL 1 El

SML 2 Eu
SML 1Q

epi
, (A7)

while its buoyancy budget is

1

2
(bl 1 bu)V

t
5 El

BBLb
l 2 Eu

BBLb
u 1 El

SMLb
l 2 Eu

SMLb
u

1Fu 2Fl 1Fgeo 1
1

2
(bl 1 bu)Q

epi
,

(A8)

where the volume-averaged buoyancy of the shaded

fluid (1/2)(bl 1 bu) does not vary with time as we are

following these same two buoyancy surfaces through

time. Technically, we should include a diffusive flux of

buoyancy across the area between points c and d, but we

assume that the diffusive buoyancy flux here has

diminished to a near-zero value, which we ignore.

From the buoyancy budget [Eq. (A8)] is now sub-

tracted (1/2)(bl 1 bu) times the volume conservation

equation [Eq. (A7)], obtaining

(bu 2 bl)

�
1

2
(El

BBL 1 Eu
BBL)

1
1

2
(Eu

SML 1 El
SML)

�
5Fu 2Fl 1Fgeo . (A9)

Taking the limit as the buoyancy difference between the

surfaces tends to zero, we have

E
net

[ E
BBL

1 E
SML

5
dF

db
1

ð
G

b
z

1

tanu
dc , (A10)

where dF/db is the rate at which the isopycnally area-

integrated magnitude of the turbulent diffusive buoyancy

flux F [see Eq. (1)] varies with respect to the buoyancy

label b of the isopycnals, while the corresponding quan-

tity for the geothermal buoyancy flux, namely, Fgeo/Db in

the limit Db / 0, has been written using Eq. (A4).

The key results of this appendix, Eqs. (A5) and (A10),

are the Walin buoyancy budget approach applied to this

geometry [see also Garrett et al. (1995) and Marshall

et al. (1999) for clear expositions of the Walin approach

to volume-integrated buoyancy budgets]. The new fea-

ture is that we have separated the budgets into the re-

gion of the BBL, where the diapycnal transport is always

positive EBBL . 0 (both because of the geothermal heat

flux and the interior mixing processes), and the near-

boundary SML of the interior, where we will see that the

diapycnal transport is always negative ESML , 0. The

simplifications that we have been able to make are

(i) that the diffusive flux of buoyancy along the boundary

in the BBL is tiny (and its divergence is even smaller by a

factor of order 0.5h sin2ubzz/bz compared with the B0

term) so this flux has been ignored; and (ii) because the

interior mixing intensity is taken to decay in the vertical,

it also decays along a buoyancy surface sufficiently far

from the boundary, and this has enabled us to ignore any

diffusion of buoyancy on the right-hand side of the

shaded fluid in Fig. 2b. In this paper, we have not con-

centrated on the physical processes that cause the vertical

profile of the turbulent buoyancy flux, so that, for ex-

ample, the intriguing and asymmetric physics of the ar-

rested Ekman layer effect (Garrett et al. 1993) could be

regarded as being part of our formulation only if its tur-

bulent buoyancy fluxes were regarded as having been

included as a contributor to our assumed exponential

decay of the magnitude of the buoyancy flux with height

above the BBL.
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While the sketch shown in Fig. 2 shows the isopycnals

to be normal to the boundary throughout the BBL, this

is not a requirement of these buoyancy budgets. The

surfaces of constant buoyancy can be drawn as smooth

curves, and the results of this appendix continue to ap-

ply. The buoyancy budgets in this paper rely on sepa-

rating the BBL and SML regions. These regions are

separated by the line along which the diapycnal velocity

is zero, with the diapycnal velocity being positive in the

BBL and negative in the SML. That is, the BBL and

SML regions are separated by the height of the maxi-

mummagnitude of the buoyancy flux per unity area as a

function of height on Fig. 1. Clearly at this height the

vertical stability bz must be nonzero, for otherwise the

mixing efficiency and the magnitude of the buoyancy

flux would be zero rather than being a maximum.

Equations (A5) and (A10) provide expressions for the

diapycnal volume transports in (i) the BBL, EBBL, and

(ii) across the entire isopycnal in this region Enet. The

difference between these two equations provides an

expression for the diapycnal transport across the SML of

the same isopycnal, namely,

E
SML

5
dF

db
2

ð B
0

b
z

1

tanu
dc . (A11)

This same equation can be found by performing the above

Walin-type buoyancy budget for the shaded fluid in the

SML of Fig. 2b, that is, for the shaded region of that figure

but excluding the part in the BBL. This SML region of

Fig. 2 has the diffusive buoyancy fluxD exiting across the

boundary a–b so that the SML loses buoyancy diffusively

at the rate D 1 Fl 2 Fu, and even in the simple case

where Fu and Fl are equal, the interior SML fluid

suffers a diffusive loss of buoyancy. This net diffusive

loss of buoyancy D 1 Fl 2 Fu may seem counterintuitive

in a steady-state situation, but it is balanced by the advec-

tive gain of buoyancy since the diapycnal volume transport

ESML is negative (i.e., downward flow through isopycnals).

Equation (A11) states that knowledge of both dF/db

and the diffusive buoyancy flux just above the BBL B0 is

sufficient to give the diapycnal volume flux in the SML

ESML. In the text, we have a different expression for ESML

[Eq. (7)], which is written as the integral of Bz/bz over

the area of a buoyancy surface in the SML. Are Eqs. (7)

and (A11) consistent? Combining these equations while

using Eq. (A6) and the definition of F of Eq. (1), we find

ðð B
z
(b, x, y)

b
z

dx dy5
d

db

ðð
B(b, x, y) dx dy

2
d

db

ðð
Ain(b

0,b)

B
0
dx dy . (A12)

Here, we will show that this equation is a mathematical

truism [i.e., it is obeyed by any B(b, x, y) field] with no

predictive value per se, so that we conclude that Eqs. (7)

and (A11) are consistent with each other. Writing the

negative of the buoyancy flux B(b, x, y) more generally

as the three-dimensional vector B, the left-hand side of

Eq. (A12) is the area integral on a buoyancy surface in

the SML of =�B/j=bj, and using Gauss’ divergence the-

orem the right-hand side can be written in terms of a

volume integral of =�B in the SML region, so that Eq.

(A12) is equivalent to the standard mathematical result

(see Marshall et al. 1999):

ðð
A(b)

a(x, t)

j=bj dA5
d

db

ððð
V(b0,b)

a(x, t) dV , (A13)

where in our case a(x, t) 5 = �B, A(b) is the area of the

b buoyancy surface in the SML, and V(b0 , b) is the

volume of seawater in the SML region that lies below

the b buoyancy surface, that is, it is the volume that lies

below the b buoyancy surface but excludes the BBL.

APPENDIX B

Steady-State Volume-Integrated Buoyancy Budget

Consider the steady-state situation in which a plume

of very dense AABW sinks through the stratified ocean

as shown in Fig. B1. The control volume we consider in

this appendix is below the buoyancy surface b in the

BBL, SML, and ocean interior and is then extended

horizontally to the ocean boundary through the sinking

AABWplume. In the body of this paper and in appendix

A, the sinking AABW plume region has not been sep-

arately considered.

The volume flux rising through the nonplume part of

the b surface is Enet, and in a steady state this is equal to

the volume flux of the sinking very dense AABW plume

that punches through a small part of the upper surface of

the control volume. The buoyancy budget for the whole

control volume represents the balance between the

diffusive flux of buoyancy F that enters the top of the

control volume being balanced by the advection of

buoyancy out of the control volume due to the volume

flux Enet entering at one (small) value of buoyancy bBWP

and leaving at another, namely, at b. That is, the volume-

integrated buoyancy budget is

F5 E
net
(b)[b2b

BWP
(b)] , (B1)

where both the volume flux of the AABW plume Enet

and its average buoyancy bBWP can be regarded as being

functions of the interior buoyancy b at the same height.
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This is a different expression to Eq. (12) in the text,

namely, F5
Ð b
bmin

Enet db
0, and in order to prove that they

are consistent, we need to prove that the buoyancy de-

rivative of Eq. (B1) is Enet.

From plume theory in a stratified fluid [e.g., Eqs.

(2)–(3) ofMorton et al. (1956)] the buoyancy budget of the

entraining dense AABWplume can be cast in terms of the

derivatives with respect to buoyancy as

d

db
[E

net
(b)b

BWP
(b)]5 b

d

db
[E

net
(b)] , (B2)

and this applies whether the AABW plume is

entraining or detraining (Baines 2005). Differentiating

Eq. (B1) with respect to b and using Eq. (B2) shows

that dF/db 5 Enet, and hence the volume-integrated

buoyancy budget [Eq. (B1)] is consistent with Eq. (12),

namely, F5
Ð b
bmin

Enet db
0.
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