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ABSTRACT

A major question for climate studies is to quantify the role of turbulent eddy fluxes in maintaining the

observed ocean–atmosphere state. It has been argued that eddy fluxes keep the midlatitude atmosphere

in a state that is marginally critical to baroclinic instability, which provides a powerful constraint on the

response of the atmosphere to changes in external forcing. No comparable criterion appears to exist for

the ocean. This is particularly surprising for the Southern Ocean, a region whose dynamics are very

similar to the midlatitude atmosphere, but observations and numerical models suggest that the currents

are supercritical.

This paper aims to resolve this apparent contradiction using a combination of theoretical considerations

and eddy-resolving numerical simulations. It is shown that both marginally critical and supercritical mean

states can be obtained in an idealized diabatically forced (and thus atmosphere-like) Boussinesq system, if

the thermal expansion coefficient is varied from large atmosphere-like values to small oceanlike values. The

argument is made that the difference in the thermal expansion coefficient dominantly controls the difference

in the deformation scale between the two fluids and ultimately renders eddies ineffective in maintaining a

marginally critical state in the limit of small thermal expansion coefficients.

1. Introduction

The response of the atmosphere and ocean circulations

to changes in the external forcing is a crucial question for

studies of climate and climate change. A major difficulty

in answering this question is that the response of the

mean circulation is strongly affected by changes in the

macroturbulence in the two fluids. Heuristic arguments

have been put forward to predict the turbulent adjustment

to changes in the external forcing, both for the atmo-

sphere and the ocean. Surprisingly the arguments put

forward for the two fluids are remarkably different, de-

spite the dynamical similarities between the two fluids.

The goal of this paper is to revisit the heuristic arguments

developed for the atmosphere and explore in which pa-

rameter range they hold.

The nature of the turbulent fluxes changes with the

medium and the latitude under consideration. In the trop-

ical atmosphere, the saturated moist entropy is well mixed

in the vertical: this well-homogenized state is marginally

critical to convective instability and turbulence acts to

maintain the system in equilibrium. The implication is

that whatever the changes in external forcing, the tur-

bulent fluxes will respond so as to keep saturated moist

entropy homogeneous. The problem is more complex

in the midlatitude atmosphere, since the turbulent fluxes

originate from baroclinic instabilities of the mean jets

and redistribute entropy and momentum both in the

horizontal and in the vertical. There is no agreed-upon

theory as to how baroclinic jets equilibrate and this is

the topic of the present paper. A common argument is

that, in analogy to the tropical problem, the turbulent

eddy fluxes keep the midlatitude atmosphere in a state

that is marginally critical to baroclinic instability. The

prediction has some observational support in the at-

mosphere (Stone 1978), although the generality of the

argument has been challenged by some numerical studies

(e.g., Panetta and Held 1988; Thuburn and Craig 1997;

Barry et al. 2000; Zurita-Gotor 2008). Most puzzling is

the fact that the marginal criticality condition is not

satisfied in the Southern Ocean, even though this ocean

is characterized by a reentrant baroclinically unstable

current and is dynamically very similar to the midlatitude

atmosphere. Yet, the failure of the marginal criticality

argument for the ocean has not received much attention.
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The original argument for baroclinic adjustment, made

by Stone (1978), is based on the condition for marginal

criticality in the two-layer quasigeostrophic (QG) model,

which can be written as

jQG [
fs

bH
5 1, (1)

where jQG is the criticality parameter, H is the lower

layer depth, s is the slope of the interface, f is the Coriolis

parameter, and b 5 ›yf. Condition (1) states that the QG

potential vorticity (PV) gradient in the lower layer van-

ishes because of a cancellation between the planetary

vorticity gradient b and the ‘‘thickness’’ gradient fs/H.

If H is assumed to scale as the tropopause height and

s is the isentropic slope in the atmosphere, then con-

dition (1) predicts that in a marginally critical state

isentropes leaving the surface in the subtropics will reach

the tropopause at about the pole, which is in general

agreement with the observed state of the atmosphere.

The argument is very appealing, but it is not clear to

what extent the condition for baroclinic instability can

be applied to continuously stratified models. Held

(1978, 1982), derives a similar result for a continuously

stratified QG model, assuming that the height of the

troposphere is given by the vertical extent of eddy fluxes

in Charney-type instabilities; and Schneider (2004),

argues that a similar constraint can be obtained based

on a relation between eddy fluxes of potential vortic-

ity and surface potential temperature in a primitive

equation (PE) system. These results do not explicitly

depend on a criticality condition to baroclinic insta-

bility, suggesting that the marginal criticality scaling in

Eq. (1) is more general than implied by the baroclinic

instability argument.

An important implication of the limitation of the

criticality parameter to order one is that turbulence can-

not produce a significant upscale energy transfer. The

latter relies upon a separation between the deformation

scale, at which turbulent eddies are generated through

baroclinic instability of the mean state, and the halting

scale, which has to be larger than the scale of the in-

stability. Held and Larichev (1996), using the two-layer

QG model, show that such a scale separation is contin-

gent on jQG being larger than one. In agreement with

the observation that the criticality parameter is close to

one, no significant separation between the scale of the

instability and the halting scale appears to exist in the

atmosphere (e.g., Merlis and Schneider 2009, and refer-

ences therein).

The marginal criticality arguments reviewed above

are quite general and should apply to baroclinic jets both

in the atmosphere and in the ocean. The Southern Ocean

is a good test case because it is characterized by an

uninterrupted circumpolar jet, the Antarctic Circum-

polar Current (ACC), whereas ocean flows at other lat-

itudes are blocked laterally by continents, resulting in a

different equilibration problem. Analogous to the mid-

latitude atmosphere, dynamic fluxes of entropy and mo-

mentum are here dominated by turbulent eddies arising

from baroclinic instability of the mean state (e.g., Karsten

and Marshall 2002, and references therein). One should

therefore expect the arguments for baroclinic adjust-

ment to hold in the ACC region. However, observa-

tions and numerical models of the Southern Ocean

show that the ACC region is supercritical, with QG PV

gradients much larger than b, and also displays an up-

scale energy transfer due to nonlinear eddy–eddy in-

teractions (Scott and Wang 2005; Tulloch et al. 2011).

The motivation for this paper is to resolve this apparent

contradiction using theoretical arguments as well as

idealized numerical simulations.

When comparing ocean and atmospheric jets, two dif-

ferences are most apparent. First, the ocean is primarily

driven mechanically by surface wind stresses, while the

atmosphere is a heat engine driven by differential heating

throughout the troposphere (e.g., Wunsch and Ferrari

2004). Second, the two fluids have different properties

(density, compressibility, etc.). This paper will focus on

the second difference and will show that by varying fluid

properties it is possible to obtain atmosphere-like mar-

ginally critical states, as well as more oceanlike super-

critical states.

We will consider an idealized, thermally forced (and

thus atmosphere-like) Boussinesq system. Within the

idealized framework of a Boussinesq fluid, differences

in the fluid properties between air and water are cap-

tured by the very different thermal expansion coeffi-

cients. We will therefore consider a thermally forced

channel with thermal expansion coefficients spanning

from atmospheric (air) to oceanic (water) values. It will

be shown that eddies become ineffective at maintaining

the system in a marginally critical state in the oceanlike

limit of small thermal expansion coefficients.

The role of the thermal expansion coefficient in set-

ting dynamical properties of the system will be discussed

in section 2. In section 3 we introduce a theoretical

framework for the eddy equilibration of an idealized

thermally forced Boussinesq system, using primitive equa-

tions in isentropic coordinates. In section 4 we present a

series of numerical simulations using a diabatically forced

primitive equation model in a channel configuration. It

is shown that marginally critical as well as supercritical

states can be found simply by varying the thermal ex-

pansion coefficient. A summary and discussion of the

results are offered in section 5.
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2. Representation and implications of fluid
properties in an idealized Boussinesq framework

We idealize the problem of turbulent adjustment by con-

sidering a Boussinesq fluid in a thermally forced zonally

reentrant channel. This configuration maintains all the

physics that are essential to test the ideas discussed in the

introduction, while omitting some of the complicating fac-

tors found in real geophysical fluids. In particular, it allows

us to continuously vary fluid properties from atmospheric to

oceanic values, without changing the dynamical equations.

Fluid differences enter the dynamical equations only

via the equation of state, which in the Boussinesq system

becomes an equation for buoyancy. Consistent with the

Boussinesq approximation, buoyancy is assumed to de-

pend linearly on potential temperature only, that is,

b 5 ga(u 2 u0), (2)

where u0 is some reference potential temperature and

a 5 2(1/r)(›r/›u) is the thermal expansion coefficient.

Within the Boussinesq approximation, the differences

between air and water are thus captured by a (the dy-

namics depends only on gradients of buoyancy and are

thus independent of the reference potential temperature

u0). For typical oceanic conditions the thermal expan-

sion coefficient is about a ’ 123 3 1024 K21. For a dry

atmosphere, where the equation of state is well ap-

proximated by the ideal gas law, on the other hand,

a 5 2
1

r

›r

›u
5

1

u
’ 3:6 3 1023 K21, (3)

where we assumed a typical potential temperature u ’

280 K. The thermal expansion coefficient of air is thus

about 10–40 times bigger than that of ocean water. Since

planetary-scale potential temperature contrasts are of

similar order in the atmosphere and ocean (because of

the strong coupling between the two fluids), the much

larger thermal expansion coefficient causes buoyancy

contrasts to be about 10–40 times larger in the atmo-

sphere, resulting in much stronger circulations.

As discussed in the introduction, one of the key dif-

ferences between the midlatitude atmosphere and the

Southern Ocean is the different deformation scales,

which are largely set by the different thermal expansion

coefficients of the two fluids. Assuming that the strat-

ification is approximately constant in the vertical, and

using the linear equation of state [Eq. (2)], the defor-

mation radius scales as

Ld ;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
D

y
bH

p
f

;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gaD

y
uH

p
f

, (4)

where Dyb and Dyu denote the vertical buoyancy and

potential temperature differences and H is the depth of

the troposphere or the thermocline. The vertical tem-

perature differences are of the same order as the hor-

izontal ones, and they are of the same order in the

atmosphere and ocean. Hence the differences in the de-

formation radii between the atmosphere and the ocean

arise from two main parameters: the large differences

in the thermal expansion coefficients and the different

depth scales. Specifically, a is about 10–40 times larger

in the atmosphere than in the ocean, while H is about

10 km for the troposphere but only about 1 km for the

ocean’s thermocline. Together these differences account

for the observation that the deformation scale of the

atmosphere is larger than that of the ocean by a factor offfiffiffiffiffiffiffiffi
100
p

2
ffiffiffiffiffiffiffiffi
400
p

; 10 2 20.

3. Macroturbulent adjustment in an isentropic
framework

We introduce a theoretical framework to address the

question of how macroturbulence sets the equilibrated

thermal structure of a thermally forced primitive equa-

tion system. The discussion will be presented in the

framework of the full primitive equations expressed in

isentropic coordinates. A simplified derivation based on

the QG approximation is given in appendix A. While the

QG-based discussion has some obvious shortcomings, it

captures the essence of the results derived below. On

a first reading, one might therefore skip to appendix A

and then proceed directly to the numerical simulations

discussed in section 4.

We will first discuss dynamical constraints on the zonal

momentum balance inspired by the work of Koh and

Plumb (2004) and Schneider (2004, 2005). Departing from

Schneider (2004), who integrates the zonal momentum

budget over the whole depth of the troposphere, we will

integrate only to the top of the surface layer (SL)—that is,

that part of the atmosphere that includes all isentropes

that intersect with the surface at some longitude or time,

as sketched in Fig. 1. (The reasons for this will be discussed

later.) To close the SL momentum budget we will derive

an additional constraint for the total meridional mass

transport in the SL. Armed with these two constraints, we

will be able to relate the turbulently adjusted mean state

to the radiative forcing. For simplicity all arguments and

simulations presented here assume a Boussinesq fluid in

a flat-bottomed reentrant channel configuration. Notice,

however, that the same qualitative results are obtained for

an ideal gas atmosphere on a spherical planet.

a. Dynamical constraint: The zonal
momentum balance

We start with the vertically integrated temporal- and

zonal-mean isentropic zonal momentum balance discussed
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in Schneider (2005). For a Boussinesq fluid in a statisti-

cally steady state in the limit of small Rossby numbers

(appropriate for large-scale ocean and atmospheric flows),

this can be approximated as

ðb
i

b
min

hb y* db’2

ðb
i

b
min

hb ŷP̂
*

1 hb J
y
F

*

P*
db 2

f

P*(bs

s
)
y9gsb9s

s
,

(5)

where y is the full meridional velocity and ygs is the

meridional geostrophic velocity at the surface, b is buoy-

ancy, bs the surface buoyancy, bmin the minimum buoy-

ancy in the domain, and bi a buoyancy level above the

SL. Also, h
b

5H(b 2 b
s
)›

b
z is the isentropic thickness

and z is the height of the isentrope b. The thickness is

multiplied by the Heaviside function H so that it van-

ishes when isentropes intersect the ground. The potential

vorticity is P 5 f /›bz, consistent with the small Rossby

number assumption, while J
y
F represents frictional forces.

The overbar denotes an isentropic zonal and temporal

average, (�)* 5 hb(�)/hb is the thickness weighted zonal

average, and (�)s
denotes a zonal and temporal average

along the surface. Primes denote departures from the zonal

averages and hats denote departures from the thick-

ness weighted averages.

Equation (5) looks similar to its QG analog: Eq. (A2)

derived in appendix A by averaging the zonal QG mo-

mentum budget. It states that the net volume transport

(or ‘‘residual transport’’) between the surface and the

isentropic surface bi is driven by the interior meridional

PV flux ŷP̂
*

and the surface geostrophic buoyancy flux

y9
gs

b9
s

s
. Hence, QG theory can be used to qualitatively

understand the momentum budget of a baroclinic jet.

There are, however, important quantitative differ-

ences between the PE and QG budgets. In QG, the SL is

infinitesimally thin and contributes only the buoyancy

flux, while the PV flux acts only in the interior. In PE, the

SL spans up to half of the troposphere in the real atmo-

sphere (e.g., Schneider 2004). In particular, the surface

buoyancy flux represents the eddy form drag generated

by outcropping isentropes in the SL.

To transform Eq. (5) into a constraint for the mean

variables, we need a closure for the eddy fluxes of PV

and surface buoyancy. Mixing length arguments (Rhines

and Young. 1982) and numerical studies (e.g., Pavan and

Held 1996) suggest that the eddy fluxes are down their

mean gradients, such that

ŷP̂
*

5 2D›yP*, y9gsb9s
s

5 2D›ybs

s
, (6)

with an eddy diffusivity D that, for simplicity, is here as-

sumed constant in the vertical. As discussed in appendix

B, all the key relationships derived below are recovered if

we allow for vertical variations in the eddy diffusivity,

with D replaced by a bulk eddy diffusivity that tends to be

dominated by its near-surface value. Ignoring frictional

forces, which are small in the atmosphere (Schneider

2005), the isentropic mass flux Eq. (5) becomes

ðb
i

b
min

hby* db ’ D

ðb
i

b
min

hb›yP*

P*
db 1

f

P*(bs

s
)
D›ybs

s
. (7)

Using the facts that P 5 f/›bz and hb 5H(b 2 bs)›bz,

the thickness-weighted average of PV can be written

as P* 5 h
b
P/h

b
’H(b 2 b

s
)f /h

b
5 Pf /h

b
, where P 5

H(b 2 b
s
) denotes the fraction of the isentrope that is

above the surface.1 We can now rewrite the first term on

the rhs of Eq. (7) as

ðb
i

b
min

hb›yP*

P*
db ’

ðb
i

b
min

hb

b

f
2 ›yhb 1

f

P*
›yP

� �
db

5
b

f
z(bi) 2 ›yz(bi) 2

f

P*(bs)
›ybs

s

’
b

f
z(bi) 2 ›yz(bi) 2

f

P*(bs

s
)
›ybs

s
.

(8)

FIG. 1. Sketch of the surface layer (SL). The undulating bottom

surface of the atmosphere shown in the longitude–potential tem-

perature (x, u) plane. The SL comprises all isentropes that intersect

with the surface at some longitude and time.

1 Notice that we here use the PV definition used by Koh and

Plumb (2004) or ‘‘convention II’’ discussed by Schneider (2005).

However, if it is assumed that the isentropic slope varies little over

the depth of the SL, ‘‘convention I’’ of Schneider (2005) yields

a result very similar to Eq. (9) except for an additional factor of 3/2

in front of the slope on the rhs. Notice however that, as will be

discussed below, the differences do become crucial if the in-

tegration is taken over the whole depth of the tropopause instead of

over just the SL, as done in Schneider (2004).
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The approximation in the last step can be formalized by

expanding variables around b
s
, following a similar der-

ivation for the surface buoyancy flux term sketched in

Schneider [2005, his Eq. (11)]. Using the relationship in

Eq. (8), Eq. (7) can now be written as

CQ(bi) ’ D

�
s(bi) 2

b

f
z(bi)

�
, (9)

where s(bi) 5 ›yz(bi) denotes the slope of the isentrope bi

and CQ(bi) [ 2
Ð bi

bmin
hy* db is the isentropic overturning

streamfunction (the subscript Q reminds us that CQ is

related to the diabatic forcing Q, as discussed below).

Equation (9) states that the net isentropic mass

transport in the SL is proportional to the eddy diffusivity

times an effective SL PV gradient, which is given by

the sum of the vertical integral of the planetary vortic-

ity gradient and the isentropic slope at the top of the

SL. This effective SL PV gradient is similar to the PV

gradient in the bottom layer of a layered QG model,

supporting the interpretation that the lower layer of

a two-layer QG model might be regarded as represen-

tative of the SL. Note, however, that the vertical extent

of the SL is not fixed (as in a layered QG model) but can

adjust (e.g., to changes in the forcing).

Notice that our approach differs from that of Schneider

(2004), who stretched the integral in Eq. (7) all the way to

the tropopause, where CQ(bt) 5 0 by definition, and

obtained the condition that the criticality parameter has

to be close to one. However, the result obtained by in-

tegrating Eq. (7) all the way to the tropopause depends

crucially on assumptions for computing PV on isentropes

below the surface [which Schneider (2005) refers to as

‘‘conventions I and II’’] and on the vertical structure of

the eddy diffusivity under the respective conventions. By

integrating Eq. (7) only over the SL, our result does not

depend on these somewhat arbitrary ‘‘conventions’’ or on

the exact vertical structure of the eddy diffusivity.

In the limit of weak diabatic circulation (i.e., jCQ/Dj �
js(bi)j), relation (9) simplifies to a statement analogous to

the marginal criticality condition of the two-layer QG

model, with the layer depth given by the depth of the

SL: that is,

fs(bi)

bz(bi)
’ 1. (10)

Similar to the marginal criticality condition of the two-

layer QG model, Eq. (10) states that the effective PV

gradient integrated over the SL has to vanish. The SL

thus becomes the analog to the lower layer in the two-

layer QG model. The relevance of this limit for typical

atmospheric conditions will, however, be questioned in

the following section, where we will derive a scaling for

the diabatic circulation CQ and show that CQ/D is typ-

ically not small compared to s(bi).

b. Thermodynamic constraint: Isentropic
mass budget

A relation between the isentropic mass transport and

the diabatic forcing can be derived from the time-and

zonal-mean continuity equation in isentropic coordinates:

›y(hby) 1 ›b(hbQ) 5 0, (11)

where Q 5 db/dt denotes the diabatic forcing. Equation

(11) can be integrated meridionally and vertically to

yield

CQ(y, bi) [ 2

ðb
i

b
min

hby(y, b9) db9 5

ðy

y
s

hbQ(y9, bi) dy9,

(12)

where we used the fact that hb vanishes on subsurface

isentropes and thus h
b
Q(y, b

min
) 5 0 for all y. Here ys

denotes the southernmost latitude where the isentrope

bi intersects with the surface or with the southern bound-

ary of the channel if it does never intersect the surface (see

sketch in Fig. 2).

By integrating Eq. (12) from ys to the northern

boundary of the domain ymax, we can further show that

in equilibrium the net heating along an isentrope has to

vanish, so we can replace the diabatic heating in the SL

by the diabatic cooling above. We thus have

CQ(y, bi) 5

ðy

y
s

hbQ (y9, bi) dy9 5 2

ðy
max

y
hbQ(y9, bi) dy9

’ 2

ðy
t

y
hbQ(y9, bi) dy9, (13)

where yt(bi) denotes the latitude at which bi intersects

with the tropopause. Equation (13) is derived assuming

that the net heating over a certain buoyancy class h
b
Q is

negligible above the tropopause, an assumption equiv-

alent to assuming that the isentropic mass transport is

small above the tropopause, which is confirmed in the

simulations discussed below and in atmospheric analysis

(e.g., Bartels et al. 1998, their Fig. 1). If bi is chosen to

be the buoyancy just above the SL, the relationship in

Eq. (13) implies that the overturning CQ(bi) at the top of

the SL is given by the integrated cooling along bi above

the SL. This cooling must be balanced by a similar

warming within the SL. Thus, CQ is given by the total
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amount of heat transported out of the SL and into the

interior within the buoyancy class bi.

Equation (13) can now be used to derive a scaling for

the diabatic overturning streamfunction. Let us assume

that the diabatic forcing can be represented by a radia-

tive relaxation—that is, Q ; 2(b 2 beq)/tr with a re-

storing time scale tr to an equilibrium buoyancy beq.

This is indeed the form of radiative forcing used in the

simulations described below and in many idealized studies

of the atmosphere (e.g., Held and Suarez 1994; Schneider

2004). Using Eq. (13) we can then argue that

CQ ;
Dbeql

tr›zb
, (14)

where l is the meridional length of the isentrope bi, and

Dbeq denotes the variation of the equilibrium buoy-

ancy along the isentrope bi (see Fig. 2 for a sketch).

Relation (14) assumes that the radiative imbalance b 2

beq along each isentrope above and below the top of the

SL scales with the variation of the radiative equilibrium

buoyancy along the respective isentrope Dbeq; this is de-

rived in detail in appendix C. Note that Dbeq is not fixed

but rather depends on the mean state and in particular on

the isentropic slope. However, changes in Dbeq are small

across all the simulations discussed in this paper.

c. Implications for the equilibrium state
and criticality

The scaling for CQ can be used to show that condition

(10) (which can be viewed as a generalization of the QG

marginal criticality condition, with the layer depth re-

placed by the depth of the SL) cannot be expected to

hold generally. The requirement for Eq. (10) to hold is

that CQ/Ds(bi)� 1, which with Eq. (14) becomes

CQ

Ds(bi)
;

Dbeql

Dtr›yb
;

Dbeq

Dyb

l2/D

tr

� 1. (15)

Here Dyb ; l›yb denotes the horizontal buoyancy dif-

ference over the meridional extent l of the isentrope bi

(note that the y derivative is here taken at constant z).

Generally Db
eq

* D
y
b, because Dbeq * Dybeq since the

vertical tilt of the isentropes adds a positive contribution

to the buoyancy contrast along an isentrope (if the re-

storing profile is statically unstable), and D
y
b

eq
* D

y
b

since the meridional temperature gradient is generally

weaker than the temperature gradient in radiative equi-

librium. Relation (15) thus implies that the diabatic

term cQ/D can be small only if (l2/D)/tr � 1; that is, the

time scale of eddy diffusion over the length of an isen-

trope l2/D has to be short compared to the restoring time

scale tr. Equivalently, the time scale over which eddy

fluxes modify the mean state needs to be fast compared to

the time scale of diabatic restoring. This is not true for

typical atmospheric conditions and for the numerical

simulations discussed below.

In typical atmospheric conditions and in the simula-

tions described below, the diffusive time scale is not

small compared to the radiative restoring time scale. In

this case the effective SL PV gradient does not vanish

because s(b
i
) 2 bf 21z(b

i
) ’ c

Q
/D . 0 for the common

situation where net warming in the SL is compensated

by net cooling above. This further implies that the net

isentropic slope will generally be steeper than predicted

by the condition s(bi) 2 bf 21z(bi) 5 0 [see Eq. (10)].

Our simulations suggest that typically fs(b
i
)/bz(b

i
)� 1

and the leading-order balance in the momentum budget

[Eq. (9)] is between the diabatic overturning and the

eddy diffusivity acting on the thickness gradient integrated

over the SL:

s(bi) ’
CQ

D
. (16)

Relation (16) has important implications for the criti-

cality parameter defined as

j 5
fs

bHt

, (17)

which is the form used in most studies on extratropical

adjustment (e.g., Zurita-Gotor and Vallis 2011, and ref-

erences therein). Here Ht denotes the depth of the

FIG. 2. Sketch of the diabatically driven overturning circulation

CQ. The solid and dotted lines denote isentropes of the mean and

radiative equilibrium states, respectively, with b3 5 beq3 . b2 5

beq2 . b1 5 beq1. The shading indicates the surface layer, which

at latitude y extends up to the buoyancy b 5 bi( y). Note that the

net heating and cooling integrated along the isentrope bi over

the distance l (i.e., from its intersection with the surface to

its intersection with the tropopause) approximately vanishes (see

section 3b).
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tropopause and s represents a characteristic isentropic

slope (whose exact definition varies in different studies).

Interpreting s as the isentropic slope at the top of the SL,

Eq. (16) predicts

j ;
f

bHt

CQ

D
, (18)

where CQ here denotes the net mass transport over the

SL, which is generally found to be close to the total

overturning transport (e.g., Held and Schneider 1999).

For any given planet (f/b fixed), the criticality parameter

j thus depends on the relation between the forcing

(and the associated CQ), the eddy diffusivity, and the

depth of the troposphere. Baroclinic adjustment theo-

ries, which predict constant j, would demand that D

scales as CQ/Ht. This is, however, not what we find in the

numerical experiments analyzed below.

A slightly more general form of Eq. (16) can be used

to compare the equilibration in atmosphere-like and

oceanlike settings. If the mechanical surface stress in

Eq. (5) is retained, a more general scaling for the isen-

tropic slope is obtained:

s(bi) ’
CQ 2 CEk

D
. (19)

For the atmospheric case CEk � CQ, which leaves us

with relation (16). In a nearly adiabatic oceanic channel,

on the other hand, CQ� CEk, which leaves us with the

scaling s(bi) ’ 2(CEk/D). A scaling similar to Eq. (19) is

discussed in Marshall and Radko (2003) for the isen-

tropic slope at the bottom of the mixed layer in the

ACC.

4. Transition to supercritical states in a channel
model

The arguments presented above are tested by ana-

lyzing numerical simulations that explicitly resolve the

macroturbulence whose effect on the mean fields we are

trying to understand. As in the theoretical discussion above,

we idealize the problem by considering a Boussinesq

fluid in a zonally reentrant channel model.

a. Model setup

We use a hydrostatic, incompressible Cartesian co-

ordinate configuration of the Massachusetts Institute of

Technology GCM (MITgcm) (Marshall et al. 1997). The

geometry is a zonally reentrant channel, 15 000 km long,

bounded meridionally by sidewalls with free slip bound-

ary conditions at y 5 64500 km, and vertically by a rigid

lid at z 5 H 5 10.2 km and a flat bottom at z 5 0, with

free slip and no-slip conditions, respectively. We employ

a vertical viscosity of nz 5 1021 m2 s21 and a diffusive

convective adjustment scheme with a diffusivity of kconv 5

102 m2 s21. No explicit horizontal diffusion of temper-

ature or momentum is used, but a fourth-order Shapiro

filter (Shapiro 1970) is employed to remove small-scale

grid noise. The horizontal resolution for all experiments

is 50 km. The vertical resolution is 400 m in the interior

but refines to 50 m at the surface, adding up to a total of

29 levels. The Coriolis parameter increases linearly as

f 5 f0 1 by, (20)

where for all simulations presented f0 5 1 3 1024 s21

and b 5 1.6 3 10211 m21 s21. With this choice the

Coriolis parameter varies strongly but stays positive

throughout the domain. We use the linear equation of

state given in Eq. (2) with varying thermal expansion

coefficients.

The simulations are forced through relaxation to an

equilibrium temperature profile, which is chosen to mimic

some of the key features of radiative forcing in the at-

mosphere. The potential temperature in radiative equi-

librium is specified as a function of y and z as

ueq 5 umin 1 Dzu
z

H

� �3
1 e2z2/h2

Dus(y), (21)

with umin 5 233 K, Dzu 5 180 K, and h 5 4 km. The

meridional dependence of the surface temperature is

given as

Dus(y) 5

Dus0 1 Dyu for y , 2Lc

Dus0 1
Dyu

2
f1 2 sin[py/(2Lc)]g for 2Lc # y # Lc

Dus0 for y . Lc

,

8>>><
>>>:

(22)

where Dus0 5 10 K, Dyu 5 80 K, and Lc 5 3500 km. The

resulting equilibrium potential temperature section is

shown in Fig. 3. It is characterized by a baroclinic zone

with a width of 7000 km and an equilibrium meridional

surface temperature difference of 80 K. The equilibrium

potential temperature vertical gradient is everywhere
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convectively unstable near the surface, while a stable

radiative-equilibrium stratification is prescribed at higher

altitudes to mimic the radiative effects of ozone in the

stratosphere. The relaxation time scale is chosen as tint 5

50 days in the interior, but decreases to ts 5 14 days at the

surface as

t(z)21
5 t21

int 1 (t21
s 2 t21

int )e2(z/h
s
)2

, (23)

with an e-folding scale hs 5 400 m.

All simulations are spun up until a quasi-steady state

is reached and statistics are calculated as an average over

at least 400 days after the equilibration is reached.

b. Results

We ran eight simulations with thermal expansion co-

efficients varying from a 5 1.6 3 1024 to 1.44 3

1022 K21, thus spanning almost two orders of magni-

tudes in a and one order of magnitude in deformation

radii. Note that a is varied by a factor of 2 between all

‘‘neighboring’’ simulations, except for the last simula-

tion with a 5 1.6 3 1024 K21, a value 30% smaller than

the penultimate run with a 5 2.25 3 1024 K21. Any

further reduction of a would cause the deformation

scale to be underresolved in the model. Notice also that

for the Boussinesq equations to be an accurate de-

scription of a physical fluid we need density variations to

be small, such that jr 2 r0j/r0 5 a(u 2 u0) � 1, a con-

straint that determined the upper bound for the thermal

expansion coefficient a.

Figure 4 shows surface temperature snapshots from

the simulations with the smallest and largest thermal

expansion coefficients, after the initial equilibration

period. Both snapshots show turbulent behavior, though

arguably more wavelike in the large a simulation. Also

evident is a reduction of the typical eddy scale, which is

similar to the domain scale for the largest a but signifi-

cantly smaller for the smallest a.

The equilibrated time- and zonal-mean states of four

representative simulations with a 5 2.25 3 1024, 9.0 3

1024, 3.6 3 1023, and 1.44 3 1022 K21 are shown in

Fig. 5. For a $ 3.6 3 1023 K21, we find that isentropes

have moderate slopes, such that isentropes leaving the

surface close to the southern end of the domain reach

the tropopause close to the northern boundary. The

baroclinic eddy kinetic energy is large over a major part

of the domain and the zonal winds, which have a large

barotropic component, change from westerlies in the

southern part of the domain to easterlies in the north,

thus implying a southward eddy flux of zonal momen-

tum. Simulations with a # 9 3 1024 K21, on the other

hand, show at least one pronounced westerly jet in the

interior domain, collocated with a maximum in eddy

kinetic energy (EKE). Analysis of the temporal evolu-

tion of the jets (not shown) reveals that they are largely

stationary with only weak meandering. The time-mean

plots in Fig. 5 are therefore qualitatively similar to the

structure at any instance. The EKE, as well as the

strength and the width of the jets, gets smaller as a is

reduced. The reduction of kinetic energy is expected

because the available potential energy (APE) in the

equilibrium state decreases with a as APE ; hb02iH/hbzi
; gahu02iH/huzi, where the angle brackets denote a do-

main-wide horizontal average and a double prime de-

notes deviations from that average.

A prominent steepening of the isentropes over the

troposphere is observed for small thermal expansion

coefficients, a # 9 3 1024 K21, a clear indication of

changes in the criticality. This is confirmed if we com-

pute the criticality parameter as

j [
f ›yu

bDVu
, (24)

where DVu [ u(Ht) 2 us denotes a bulk stability based

on the potential temperature difference between the

tropopause (here defined as the height at which

du/dz 5 1022 Km21) and the surface.2 The horizontal

temperature gradient ›yu in Eq. (24) is evaluated as an

average over the lower half of the troposphere. Defini-

tion (24) has the advantage that it is not sensitive to

the choice of a particular level at which we evaluate the

FIG. 3. Equilibrium potential temperature (K) for thermal

restoring (contour interval is 10 K).

2 Isentropes tend to flatten out in the Ekman layer in our sim-

ulations (an effect arising from a combination of Ekman drag and

convective adjustment). Hence we use the model temperature

above this Ekman layer, at a height of about 300 m, as the ‘‘sur-

face’’ temperature.
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isentropic slope. The results presented here, however,

do not qualitatively depend on the exact definition used

for the criticality parameter.

Figure 6 shows the criticality parameter calculated as

an average over the baroclinic zone between y 5 23500

and 13500 km, and locally at the latitude of the maxi-

mum EKE. The domain averaged criticality parameter

seems to approach a value close to one for large thermal

expansion coefficients but increases steadily for values

smaller than the atmosphere-like expansion coefficient

aA 5 3.6 3 1023 K21. The criticality parameter at the

latitude of maximum EKE also increases as a is de-

creased, but it shows a much more irregular behavior

with a large jump in j between the simulations with a 5

1.8 3 1023 and 9 3 1024 K21. Comparison with Fig. 5

shows that this jump coincides with the emergence of an

interior westerly jet that is collocated with the maximum

EKE.

Held and Larichev (1996) show that the criticality

parameter j can be related to the ratio between the

deformation scale, where EKE is produced by baroclinic

instability, and the Rhines scale, where a possible up-

scale energy transfer is halted. In a marginally critical

state the two scales ought therefore to be similar, re-

sulting in no significant upscale energy transfer. We cal-

culated the deformation scale according to

Ld 5
2

f

ðH
t

0
(›zb)1/2 dz (25)

FIG. 4. Snapshots of surface potential temperature (K) for the simulations with (left) a 5 1.44 3 1022 and (right) a 5 1.6 3 1024 K21.

FIG. 5. Time- and zonal-mean fields of potential temperature (thick gray lines), EKE (thin black lines), zonal wind (shading; m s21) and

the tropopause height, defined as the height at which du/dz 5 1022 K m21 (thick black line), for simulations with varying thermal ex-

pansion coefficients (see graph titles). The contour interval for isentropes is 10 K. Contour intervals for EKE are, from top left to bottom

right, 40, 20, 10, and 3 m2 s22.
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(which is consistent with the Wentzel–Kramers–Brillouin

(WKB) approximation for the first vertical eigenmode)

and the Rhines scale as

L
b

5 2p
EKE1/4

T

b1/2
, (26)

where EKET denotes the barotropic EKE. Figure 7 shows

the domain-averaged deformation and Rhines scales for all

simulations. Consistent with what we found for j, the two

scales are similar only for the experiments with the largest

values of a. For smaller values of a, the deformation scale

decreases much more rapidly than the Rhines scale.

The argument above assumed that 1) baroclinic in-

stability produces EKE near the deformation scale and

2) energy is then transferred up to the Rhines scale. To

test both assumptions we 1) performed a linear instability

analysis and 2) calculated the eddy scale from the baro-

tropic eddy kinetic energy spectrum.

Scales of baroclinic instability are calculated as in

Smith (2007), based on the meridional planetary QG PV

gradient, averaged over the domain between y 5 23500

and 13500 km. For all simulations the fastest growth

rates are found for a deep tropospheric eigenmode with

a wavelength close to the deformation scale calculated

according to Eq. (25), as shown in Fig. 7.

The dominant eddy scales are estimated from the

barotropic eddy kinetic energy spectra, for the same

region, using a Hanning window in the meridional di-

rection to avoid Gibbs phenomena due to nonperiodic

data. The eddy scale was then calculated as the inverse

centroid of the barotropic EKE spectrum as proposed by

Schneider and Liu (2009)

Le 5 2p

ð
(k2 1 l2)21/2E(k, l) dk dlð

E(k, l) dk dl

, (27)

where E(k, l) is the energy density as a function of the

zonal and meridional wavenumbers. We find that the

barotropic eddy scale is well approximated by the Rhines

scale (Fig. 7). The results therefore suggest that, as the

thermal expansion coefficient is reduced, eddies become

ineffective in keeping the mean state at a criticality close

to one and undergo an upscale energy transfer from the

instability scale to the Rhines scale. This is confirmed by

a detailed analysis of the spectral EKE budget presented

in appendix D.

To compare the numerical results to the theory dis-

cussed earlier, and in particular to the prediction of Eq.

(18), we need estimates for the isentropic mass transport

CQ and the eddy diffusivity D. We calculated the total

FIG. 6. Supercriticality averaged over the domain between y 5

23500 and 13500 km (circles) and at the latitude of maximum

EKE (crosses), as a function of the thermal expansion coefficient

normalized by the atmosphere-like value of aA 5 3.6 3 1023 K21.

The thick markers denote the simulation with an atmosphere-like

thermal expansion coefficient.

FIG. 7. Deformation scale (crosses), Rhines scale (squares), the

scale of the fastest-growing wave (plusses), and the barotropic

eddy scale (circles) as a function of the normalized thermal

expansion coefficient a/aA. All scales are based on averages

over the domain between y 5 23500 and 13500 km. See text for

details.

704 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 69



isentropic mass transport by remapping the flow field into

isentropic coordinates and integrating up to the buoyancy

bi at which the mass transport h
b
y changes sign:

CQ [ 2

ðb
i

b
min

hby(y, b9) db9. (28)

We then calculated the mean isentropic mass transport

over the baroclinic zone between y 5 23500 and

13500 km for all simulations. The eddy diffusivity is

calculated from the near-surface3 flux–gradient re-

lationship for buoyancy as D 5 2(y9b9
s
/›yb

s
). Again

mean values over the baroclinic zone between y 5

23500 and 13500 km are presented for all simulations.

The resulting mean overturning mass transport and

eddy diffusivity estimates are shown in Fig. 8. While

both the isentropic mass transport and the eddy diffusivity

decrease as the thermal expansion coefficient is reduced,

the eddy diffusivity decreases much more rapidly: the

eddy diffusivity varies by a factor of about 15 over the

range of simulations, while the isentropic mass transport

changes only by about a factor of 3. In agreement with

Eq. (16), this results in a steepening of the isentropes.

Qualitatively, we can therefore understand the steep-

ening of the isentropes as resulting from a reduction in

the eddy diffusivity, which in turn is expected from the

reduction of the deformation scale and baroclinicity with

the thermal expansion coefficient.

The steepening of the isentropes here translates di-

rectly to an increase in the criticality parameter, since the

latter varies much more than the height of the tropo-

pause. Noting that the ‘‘planetary scale’’ b/f is also

constant in the simulations shown here, the scaling for

the criticality parameter is here dominated by changes

in the isentropic slope (i.e., j is directly proportional

CQ/D). As shown in Fig. 9, this is confirmed well by the

numerical simulations.

c. Deriving a scaling relation for the criticality
parameter

The scaling law for j can be made into a predictive

theory, if CQ and D are expressed in terms of external

parameters. Mixing length arguments (e.g., Pavan and

Held 1996) suggest that the eddy diffusivity can be ap-

proximated by the product of the eddy scale and the

barotropic eddy velocity, that is

FIG. 8. Isentropic mass transport C (plusses) and eddy diffusivity

D estimated from a near-surface buoyancy flux–gradient relation-

ship (circles), and from the barotropic eddy velocity and scale

(squares), for varying thermal expansion coefficients. All quanti-

ties are normalized by their respective value in the simulations with

aA 5 3.6 3 1023 K21 and averaged over the domain between y 5

23500 and 13500 km (see text).

FIG. 9. Supercriticality j against the ratio of the isentropic mass

transport and the eddy diffusivity c/D. The black line denotes

a slope of 1. All quantities are averaged over the baroclinic zone

between y 5 23500 and 13500 km (see text).

3 Because of the use of no-slip boundary conditions in the sim-

ulations discussed here, the actual eddy flux vanishes at the surface.

We therefore evaluated the flux–gradient relationship to calculate

the eddy diffusivity above the surface Ekman layer at 300-m height.

Note that the theoretical predictions derived in section 3 assume a

downgradient flux for the geostrophic eddy flux of surface buoy-

ancy y9
g
b9

s
, which is best approximated by the flux just above the

Ekman layer.
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D ; LeEKE1/2
t . (29)

This scaling is shown to work in Fig. 8, and the eddy scale

is well approximated by the Rhines scale in our simu-

lations Le ’ Lb (Fig. 7). If we use the scaling Lb ; jLd

proposed by Held and Larichev (1996) for fully developed

QG turbulence, we have

D ; L
b

EKE1/2
t ; L3

bb ; j3bL3
d. (30)

While the first relation in Eq. (30) holds over the whole

range of simulations, some caution must be used in ap-

plying Held and Larichev (1996)’s scaling relation be-

cause it is formally valid only for Lb � Ld (i.e., for

strongly supercritical simulations). Figure 10 shows that,

despite the limited scale separation, the simulations

broadly support the scaling in Eq. (30) as long as a , aA

and j . 1. The scaling relation, however, breaks down

for the marginally critical simulations with a * aA,

which show much weaker eddy diffusivities than pre-

dicted by Eq. (30). A scaling for the isentropic mass

transport was derived in section 3c, Eq. (14), as

CQ ; (Dbeql/›zbtr), where Dbeq denotes the variation of

the equilibrium buoyancy along the isentrope bi, and l

denotes the distance between the latitudes where the

isentrope bi intersects with the surface and the tropopause.

Using the fact that l ; (b
z
/b

y
)H

t
and b 5 ga(u 2 u0), we

find that

CQ ;
DbeqHt

›ybtr

;
DueqHt

›yutr

. (31)

The scaling for the mass transport [Eq. (31)] has no ex-

plicit dependence on the thermal expansion coefficient,

which is here varied much more strongly than any other

mean-state variable. This explains why changes in the

total isentropic mass transport are in general much smaller

than changes in the eddy diffusivity, which instead de-

pends explicitly on the thermal expansion coefficient via

its dependence on the deformation scale per Eq. (30).

The weak variations in CQ are dominated by variations

in ›yu and Dueq. Figure 10 shows the scaling [Eq. (31)],

but considering only variations in CQ due to changes in

›yu. This captures the variations in CQ well for simula-

tions with a $ 9 3 1024 K21, for which the isentropic

slope changes little. The simulations with smaller a,

however, show significantly weaker overturning circu-

lations, which is due to the reduction in Du
eq

as the

isentropes steepen (see Fig. 3). As we will show later,

variations in Dueq are, however, negligible in the final

scaling for the criticality parameter and can be ignored

for present purposes. Notice also that the scaling [Eq.

(31)] further assumes that the diabatic forcing is given by

the radiative relaxation. An additional diabatic term

arises from the convective adjustment scheme. This term

is generally small compared to the heating associated

with the relaxation scheme in our simulations.

We can now derive a scaling for the criticality pa-

rameter j in the supercritical regime in terms of mean

state variables. Substituting Eqs. (31) and (30) back into

Eq. (18) and rearranging terms yields

j ;
1

trf

Dueq

a›yu

 !
1/4

Ld

a

� �23/4

, (32)

where a 5 f /b denotes the dynamical planetary scale,

which for our simulations (as well as for the earth’s

atmosphere) is comparable to the width of the baroclinic

zone. Equation (32) predicts that variations in the crit-

icality are dominated by variations in the deformation

scale Ld, which decreases strongly as a is decreased. As

confirmed by Fig. 11, we therefore find that the critical-

ity parameter in the supercritical limit is to a good ap-

proximation proportional to the 23/4th power of the

deformation scale. Since the reduction in the deformation

scale is dominated by the reduction in a, this qualitatively

FIG. 10. Eddy diffusivity D against the scaling in Eq. (30) (cir-

cles), and isentropic mass transport C against the inverse hori-

zontal temperature gradient (›yu)21 [see Eq. (31)]. All quantities

are averaged over the baroclinic zone between y 5 23500 and

13500 km and normalized by their respective values in the at-

mosphere-like simulation with a 5 3.6 3 1023 K21. The black

line denotes a slope of 1.
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explains the observed increase in the criticality parame-

ter as a is reduced. Since Dueq/a›yu ; O(1) and trf ;

O(102), we may further note that the prefactor in Eq.

(32) is on the order of [(1/trf )(Dueq/a›yu)]1/4
; 0:2 2 0:4.

Equation (32) thus suggests that supercritical states

may only be expected if Ld/a � 1, which is in general

agreement with the results shown in Fig. 11.

The scaling [Eq. (32)] breaks down for simulations in

which Ld/a becomes larger than about 0.2 and the crit-

icality approaches one. The dependence of the criticality

parameter on the deformation scale then flattens out

and seems to asymptote toward a constant value close to

one. This is in qualitative agreement with results from

previous studies (e.g., Schneider 2004; Schneider and

Walker 2006), who find that the criticality parameter of

diabatically forced systems stays close to one over a wide

range of parameters and forcings. The flattening out of

the scaling relation between j and Ld/a is here associ-

ated dominantly with the breakdown of the diffusive

scaling law [Eq. (30)], which is not expected to hold in

the marginal critical limit and predicts much larger eddy

diffusivities than observed in these simulations.

The saturation of the criticality parameter to one, for

simulations where the Held and Larichev (1996) scaling

relation breaks down, might seem to support traditional

ideas of baroclinic adjustment. These predict that eddy

activity will decrease rapidly once the criticality parameter

gets close to one because the system becomes neutral to

baroclinic instability or unstable modes become shallow

(e.g., Zurita-Gotor and Lindzen 2007, and references

therein). Whether this reasoning is appropriate for the

simulations presented here is, however, not clear. Pre-

liminary simulations suggest that the breakdown of the

Held and Larichev (1996) scaling for the eddy diffusivity

is here at least partially associated with an increasing

role of bottom friction in this limit, which might be via

a direct influence of friction on the eddies themselves or

indirectly via the modification of the mean flow and a

‘‘barotropic governor’’ mechanism (James and Gray

1986). The important role that bottom friction can play in

controlling the eddy diffusivity has recently been dis-

cussed by Thompson and Young (2007). When and how

exactly the transition to marginally critical states occurs,

however, is beyond the scope of this study but will be the

subject of future work.

It should also be noted that the eddy diffusivity scaling

in Eq. (30) relies on the assumption that the eddy scale is

proportional to the Rhines scale. However, our quali-

tative argument that the criticality increases for small a

holds as long as the eddy diffusivity decreases as the

thermal expansion coefficient is decreased. In the real

ocean and atmosphere, where other processes (such as

bottom friction) can prevent eddies from growing much

beyond the deformation scale, Green (1970), Stone

(1972), and many other authors since have proposed

different scalings for the diffusivity. However, all these

scalings share the property that the eddy diffusivity de-

creases as a is reduced.

Finally, one might ask whether there is a limit to the

validity of the proposed scalings in the supercritical limit.

One limitation comes from the assumption, implied in

the scalings above, that the heat transport is dominated

by large-scale eddies as opposed to convection, and that

the stratification is dominantly statically stable. While

this is true for all simulations discussed here, we do

observe an increasing role of convection as the thermal

expansion coefficient is reduced and the criticality in-

creases, suggesting that there might be a limit where

convective transports will start to dominate. Whether

such a limit is universal or specific to a certain set of

parameters and forcing, however, is an open question.

5. Summary and discussion

We showed that states with marginally critical as well

as supercritical states with much steeper isentropic

slopes can be obtained in a diabatically forced system if

the thermal expansion coefficient is varied. Equilibrium

states with criticality parameters close to one (j ’ 1) are

found for large thermal expansion coefficients, which

FIG. 11. Supercriticality j against the normalized deformation

scale Ld/a [see Eq. (32)]. The black line denotes a slope of 23/4

(note that the axes are logarithmic). All quantities are averaged

over the baroclinic zone between y 5 23500 and 13500 km.
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are associated with deformation scales on the same order

as the planetary scale. Supercritical mean states (j . 1)

are obtained for small thermal expansion coefficients,

which are associated with deformation scales much

smaller than the planetary scale. As the thermal expan-

sion coefficient is reduced, deformation-scale eddies

become less effective at stabilizing the mean state, which

causes an increase in the isentropic slope and thus in the

criticality parameter. The higher criticality parameter

allows for a more turbulent state with an upscale energy

transfer from the scale of the instability to the Rhines

scale due to nonlinear eddy–eddy interactions. In sum-

mary, in the marginally critical limit we find weakly

nonlinear, deformation-scale eddies that are efficient in

modifying the mean state. For supercritical states, in-

stead, eddies are less efficient in modifying the mean

state, but nonlinear eddy–eddy interactions become more

important.

The results found in the limit of large thermal expan-

sion coefficients resemble those observed in the real

atmosphere, which is close to marginal criticality and

dominated by weakly nonlinear eddies close to the de-

formation scale (e.g., O’Gorman and Schneider 2007,

and references therein). The results found in the limit of

small thermal expansion coefficients, on the other hand,

display some of the characteristics found in the Southern

Ocean, which is not in a state close to marginal criticality

and where nonlinear eddy–eddy interactions are be-

lieved to be important in setting the observed eddy scale

(e.g., Scott and Wang 2005). One difference, however, is

that in the Southern Ocean the scale of the eddies is not

generally set by the Rhines scale. This is likely because

the upscale energy flux is arrested earlier by bottom drag

and or topography.

The variations in the criticality parameter over our

simulations are dominated by changes in the isentropic

slope, which in turn are shown to be well captured by the

scaling

s ;
CQ

D
, (33)

where CQ is the eddy-driven diabatic overturning cir-

culation and D is the eddy diffusivity. We showed that

the diabatic overturning is to first order independent of

the thermal expansion coefficient. The scaling [Eq. (33)]

therefore implies that the increase in criticality param-

eter for small expansion coefficients can be understood

as stemming from a decrease in the eddy diffusivity as

the deformation scale is reduced. In the limit of small

thermal expansion coefficients, in which deformation

scales are much smaller than the planetary scale, we can

employ scalings for CQ and D to show that the criticality

parameter is to leading order proportional to the 23/4th

power of the deformation scale. In the limit of large

thermal expansion coefficients (and deformation scales

on the same order as the planetary scale), the criticality

parameter asymptotes to a constant value close to unity.

This latter limit is in agreement with previous studies

that suggested that the atmosphere maintains a critical-

ity parameter close to unity over a wide range of forcings

and parameters, although the exact mechanisms re-

sponsible for this result remain unclear and will be

subject of a future study.

It is worth noting that our results imply that super-

critical, more strongly turbulent states are found in the

limit of weaker buoyancy contrast to which the system is

restored (since Db 5 gaDu). These states are also char-

acterized by an overall weaker EKE. The nondimensional

ratio of EKE to the square of the mean baroclinic shear

does, however, increase with the criticality, as predicted

by QG studies (Held and Larichev 1996).

Our results are in qualitative agreement with recent

work by Zurita-Gotor and Vallis (2011), who also find

that the criticality parameter exceeds one in the limit of

weak equilibrium horizontal temperature gradients if

the depth of the tropopause is constrained by the radi-

ative restoring profile, as in our simulations. Our results

are also consistent with results shown in Schneider and

Walker (2006), if one compares appropriate sets of sim-

ulations. In most of the simulations discussed in Schneider

and Walker (2006), the convective adjustment scheme

restores to a finite stratification to mimic the stabilizing

effects of moisture. In these simulations the adjustment

scheme becomes active in the limit of small buoyancy

gradients, and prevents the system from reaching su-

percritical mean states—the system becomes subcritical

once the stratification is set by the convection scheme.

However, the authors also perform a series of simulations

in which convective adjustment restores to a convectively

neutral profile, as in our simulations. In agreement with

our results, these simulations suggest equilibration to

supercritical mean states in the limit of small buoyancy

gradients.

An alternative perspective to equilibration of jets in

the ocean and atmosphere is provided by the theory of

transient stable amplification and adjustment to a gen-

eralized marginally stable state (Farrell and Ioannou

2009, and references therein). The theory has so far been

derived using the QG approximation and prescribes the

vertical stratification. This is a major limit for applying

the theory to our work whose focus is on the changes

in stratification and deformation radius. Moreover, the

eddy–eddy fluxes, which are crucial in setting the large-

scale adjustment, are not predicted by the theory. A test

of the parameterizations used to close the problem, as
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well as a generalization of these ideas to primitive

equation systems, would be a welcome contribution to

the discussion.
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APPENDIX A

Deriving a Scaling for the Criticality in
a Quasigeostrophic Framework

The scalings for the overturning circulation, derived in

section 3 for the more general primitive equations, can

be recovered in a qualitative way using the continuously

stratified QG equations. We will first discuss dynamical

constraints on the zonal momentum balance. To close

the momentum budget we will then need a closure for

the eddy fluxes and a constraint for the meridional over-

turning mass transport. Armed with these two closures,

we will be able to relate the turbulently adjusted mean

state to the applied forcing. For simplicity all arguments

and simulations presented here will assume a QG

Boussinesq fluid in a flat-bottomed reentrant channel

configuration.

a. Dynamical constraint: The zonal momentum
balance

We start from the zonal momentum balance, which in

the QG transformed Eulerian mean (TEM) formulation

can be written as

2f0y* 5 y9q9, (A1)

where y* 5 2›
z
c* denotes the residual meridional

velocity, with the residual streamfunction c* [ 2
Ð z

0y dz9 1

(y9b9/›zb0) and the reference buoyancy profile b0. The

QG PV is q 5 f0 1 by 1 zg 1 f0›z(b/›zb0), with zg the

geostrophic relative vorticity. Frictional forces have

been ignored because they are weak in the simulations

used in this study. Zonal averages are here taken at

constant z. We can integrate Eq. (A1) from the surface

(for simplicity here again assumed to be flat at z 5 0) to

some height z to get

f0c*(z) 5

ðz

0
y9q9 dz9 1 f0

y9b9

›zb0

(0), (A2)

where we used the fact that c*(0) 5 y9b9/›
z
b

0
(0).

Assuming a diffusive closure for the eddy fluxes of PV

and surface buoyancy and ignoring the contribution of

relative vorticity to the PV, we find

c*(z) 5 2

ðz

0
D

b

f0

1 ›yz

b

›zb0

 !
dz9 2 D

›yb

›zb0

(0). (A3)

If z is chosen close to the surface so that we can assume

that the eddy diffusivity is approximately constant over

the regarded layer, we get

c*(z) 5 D

�
s(z) 2

b

f0

z

�
, (A4)

where s 52(›
y
b/›

z
b

0
). Equation (A4) is the QG analog

of Eq. (9) and shows that the residual transport below

any level z is proportional to the eddy diffusivity times

the effective PV gradient vertically integrated below z.

The latter is given by the sum of the vertical integral of

the planetary vorticity gradient and the isentropic slope

at the top of the layer, and thus bears close resemblance

to the PV gradient in the bottom layer of a layered QG

model.

If we choose z to be a small height just above the

surface, the b term in Eq. (A4) can be neglected and we

obtain a scaling for the isentropic slope near the surface:

s 5
c*

D
. (A5)

Substituting expression (A5) for the slope into the def-

inition of the supercriticality, we find

j ;
f

bHt

c*

D
, (A6)

which is the QG analog of Eq. (18). For any given planet

(f /b fixed), the supercriticality j thus depends on the

relation between the residual overturning c* (which, as

shown in the following section, can be related directly to

the diabatic forcing), the eddy diffusivity, and the depth

of the troposphere.

b. Thermodynamic constraint: Isentropic mass budget

Similar to our discussion in section 3b, we want to

relate the residual overturning streamfunction c* to the

diabatic forcing using the thermodynamic equation

›tb 5 2›yc*›zb0 1 Q, (A7)

where Q 5 db/dt is the diabatic forcing. In steady state,

we can integrate Eq. (A7) horizontally to get
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c* 5

ðy

y
min

Q

›zb0

dy9 ’ 2

ðy
max

y

Q

›zb0

dy9, (A8)

where ymin and ymax denote the southern and northern

boundaries, respectively, where c* is assumed to vanish.

Condition (A8) is the QG analog of Eq. (13); however,

because of the assumption of horizontal isentropes,

implicit in the QG equations, the along-isentrope in-

tegration in Eq. (13) becomes a horizontal integration

over the entire width of the domain.

We can now derive a scaling for c* based on Eq. (A8).

We will assume that the diabatic forcing can be represented

by a radiative relaxation—that is, Q 5 2(b 2 beq/tr),

with a restoring time scale tr and an equilibrium buoy-

ancy profile beq. This is the form of radiative forcing

used in our simulations and in many idealized studies of

the atmosphere (e.g., Held and Suarez 1994; Schneider

2004). Using Eq. (A8) we then find

c* ;
QL

›zb0

;
(b 2 beq)L

›zb0tr

. (A9)

Here L denotes the width of the domain, which naturally

replaces the length of the isentrope l appearing in the

isentropic coordinate scaling, consistent with the as-

sumption that the isentropic slope is weak compared

to the aspect ratio, implied in the QG approximation.

Equation (A9) is the QG analog to the scaling in Eq.

(14). In the main paper, we further relate the thermal

disequilibrium (b 2 beq) to the variation of the equi-

librium buoyancy along an isentrope Dbeq. The argu-

ment, however, cannot be readily transferred to the QG

framework.

APPENDIX B

Implications of the Vertical Structure of Eddy
Diffusivity

If we are to allow for the eddy diffusivity to have some

vertical structure, the closure relationships for the eddy

fluxes become

ŷP̂
*

5 2D(b)›yP*, y9gsb9s
s

5 2Ds›ybs

s
, (B1)

where Ds 5 D(b)
s
. Note that D can of course also have

a y dependence, which is not made explicit here since all

relationships hold locally at any given y. Substituting

these closures in the vertically integrated momentum

budget in Eq. (7) yields

ðb
i

b
min

hby* db ’

ðb
i

b
min

D(b)
hb›yP*

P*
db 1

f

P*(bs

s
)
Ds›ybs

s
.

(B2)

Following the same steps used to derive Eq. (8), we can

write the first term on the rhs of Eq. (B2) as

ðb
i

b
min

D(b)
hb›yP*

P*
db ’

ðb
i

b
min

D(b) hb

b

f
2 ›yhb 1

f

P*
›yP

� �
db

5 DSL

ðb
i

b
min

hb

b

f
2 ›yhb

� �
db 1

ðb
i

b
min

D(b)
f

P*
›yP db

’ DSL

�
b

f
z(bi) 2 ›yz(bi)

�
2 Ds

f

P*(bs

s
)
›ybs

s
, (B3)

where we defined a bulk SL diffusivity:

DSL [

ðb
i

b
min

D(b) hb

b

f
2 ›yhb

� �
db

ðb
i

b
min

hb

b

f
2 ›yhb

� �
db

. (B4)

The weighting factor in the definition of the bulk SL eddy

diffusivity can be written as hb(b/f ) 2 ›yhb 5 hb(b/f ) 2

H(b 2 bs)›ybz 1 d(b 2 bs)›bz›ybs and is generally

dominated by the contribution of the (negative) sur-

face buoyancy gradient over the SL (e.g., Schneider

2005). In practice DSL can therefore be expected to be

well approximated by the surface diffusivity Ds.

APPENDIX C

A Scaling for the Diabatically Forced Overturning

We here derive a scaling for the diabatically forced

overturning CQ [Eq. (12)], which is set by the heating
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integrated along the lower part of an isentrope, which

has to be balanced by a similar cooling above:

CQ [

ðy

y
s

hQ(y9, bi) dy9F 2

ðy
t

y
hQ(y9, bi) dy9. (C1)

Here ys and yt denote the southernmost and northern-

most latitudes at which the isentrope bi is above the

surface and below the tropopause, at any time and lon-

gitude (or alternatively the southern and northern

boundaries of the domain). If, for simplicity, we assume

that the stratification between the surface and the tro-

popause changes little along bi, then we can approximate

Eq. (C1) as

CQ ’ ›zb
21
ðy

y
s

Q(y9, bi) dy9 ’ 2›zb
21
ðy

t

y
Q(y9, bi) dy9.

(C2)

We now want to choose bi such that it separates the

regions of heating (below) and cooling (above)—that is,

such that Q(y9, bi) . 0 for y9 , y and Q(y9, bi) , 0 for y9 .

y (choosing bi just above the SL generally fulfills this

condition to a good approximation, since diabatic heating

is usually confined to the SL while cooling is found

above). We then find that

CQ ’
1

2
›zb

21
ðy

t

y
s

jQ(y9, bi)j dy9. (C3)

Assuming a restoring condition such that Q 5 2 (bi 2

beq)/tr, where beq denotes the radiative equilibrium

buoyancy and tr the restoring time scale, we get

CQ ’
1

2
›zb

21
ðy

t

y
s

t21
r jbeq 2 bij dy9

5
1

2
›zb

21
ðy

t

y
s

t21
r jbeq 2 hbeqijdy9, (C4)

where hbeqi[
Ð yt

ys
t21

r beq dy/
Ð yt

ys
t21

r dy is the weighted

mean equilibrium buoyancy along the isentrope bi, and

we again used that the net heating over bi vanishes. We

thus find that the residual overturning mass flux scales as

CQ ;
Dbeql

›zbtr

, (C5)

where Dbeq denotes the variation of the equilibrium

buoyancy over bi, and l denotes the length of the isen-

trope between the surface and the tropopause.

APPENDIX D

The Spectral EKE Budget

We showed in Fig. 7 that the separation between the

scale of the eddies (which scales with the Rhines scale)

and the scale of the instability (which scales with the

deformation scale) increases as the thermal expansion

coefficient is reduced. This suggests that our simulations

must display a substantial upscale transfer of eddy ki-

netic energy from the scale of the instability to the

Rhines scale for small a. To support this conclusion we

compute the spectral eddy kinetic energy budget for the

two simulations with the largest and smallest thermal

expansion coefficients. We calculate the vertically in-

tegrated eddy kinetic energy budget in terms of hori-

zontal wavenumbers. The calculation is analog to Koshyk

and Hamilton (2001) except that, because of the Car-

tesian geometry underlying our simulations, we use

horizontal wavenumbers instead of spherical harmonics.

We further separate the EKE and KE of the zonal mean

flow, an important distinction for our purposes.

The spectral EKE budget can then be written as

›tEKEK ’ TEE 2 TEM 1 TPK 2 D, where (D1)

EKEK 5

ðH

0

1

2
(ju9Kj

2
1 jy9Kj

2) dz

	 

, (D2)

denotes the EKE at the horizontal wavenumber K 5ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 1 l2
p

, with the angle brackets here denoting a time

mean,

TEE 5

ðH

0
Re[2u9K*(u9 � $u9)K 2 y9K*(u9 � $y9)K] dz

	 

(D3)

denotes the spectral eddy–eddy energy transfer,

TEM 5

ðH

0
Re[u9K*(u9 � $u)K 1 yK

*(u9 � $y)K

	

1 u9K*(u � $u9)K 1 y9K*(u � $y9)K] dz



(D4)

denotes the spectral kinetic energy transfer from the

eddies to the mean flow,

TPK 5

ðH

0
Re(w9K*b9K) dz

	 

(D5)

denotes the energy transfer from eddy available poten-

tial energy to eddy kinetic energy, and
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D 5

ðH

0
Re(u9K*n›zzu9K 1 y9K*n›zzy9K) dz

	 

1 filter

(D6)

denotes dissipation by the explicit vertical viscosity n

and by the numerical filter (Shapiro 1970). Note that

there is some contribution to the energy budget at any

given wavenumber by the Coriolis term because f is not

constant with latitude. This term, however, is small in

our simulations and is herein ignored.

Figure D1 shows all the terms in the spectral EKE

budget for the two simulations with the largest and

smallest thermal expansion coefficients a 5 1.44 3 1022

and 1.6 3 1024 K21. In both experiments the transfer

from eddy APE to EKE peaks at the scale of instability

as calculated from the QG instability analysis and shown

in Fig. 7. For the simulation with the largest thermal

expansion coefficient a 5 1.44 3 1022 K21, this in-

stability scale coincides with the Rhines scale, and

thereby with the dominant barotropic eddy scale. The

EKE produced at the scale of the instability is therefore

dominantly transferred into the mean flow or dissipated

in eddies of similar scales. No significant upscale eddy–

eddy transfer is observed, although some energy is

transferred to small scales where it is dissipated by the

numerical filter. For the simulation with the smallest

thermal expansion coefficient a 5 1.6 3 1024 K21, the

instability scale is significantly smaller (by about a factor

of 6) than the Rhines scale, which in turn coincides with

the dominant barotropic eddy scale. The EKE at this

larger scale is maintained by an upscale energy transfer

from the scale of the instability to the Rhines scale. The

transfer of kinetic energy from the eddies to the mean

flow plays a smaller role in this simulation.

The results presented here support the conclusion

presented in the main paper that, while the simulations

with large thermal expansion coefficients are marginally

critical and do not exhibit a significant upscale transfer

of EKE, the simulations with the smallest thermal ex-

pansion coefficients show all aspects of a supercritical

state, including a significant upscale energy transfer that

is responsible for setting the scale of the barotropic

eddies. The upscale energy transfer here spans about

a factor of 6 in wavenumber space, which is of similar

order though likely somewhat larger than found in the

Southern Ocean (e.g., Tulloch et al. 2011). Notice that

even though upscale energy fluxes due to nonlinear eddy–

eddy interactions are important for the dynamics in these

states, we do not find a clean ‘‘inertial range’’ over which

the energy flux is constant and unaffected by EKE pro-

duction or dissipation. Such an inertial range can be

achieved only if the scale separation between the maxi-

mum EKE production and dissipation (or transfer to

the mean flow) spans several orders of magnitude. Given

our computational resources, we cannot run simulations

FIG. D1. (a) Spectral EKE budget for the simulation with a 5 1.44 3 1022 K21: eddy APE to EKE transfer (solid

black), EKE transfer due to eddy–eddy interactions (solid gray), mean KE to EKE transfer (dashed gray), and the

explicit part of the dissipation (dashed black). The kinetic energy transfer terms have been smoothed by a five-point

running mean. The thin dashed black line denotes the residual and includes the dissipation due to the numerical filter,

which becomes dominant near the grid scale. Note that the residual, which (next to the numerical filter) arises from

limited statistics and inaccuracy in the calculation of the spectral transfer terms, is small compared to the leading-

order terms at all relevant wavenumbers away from the grid scale. The vertical black dashed and solid lines denote

the Rhines scale and the scale of the instability, respectively, which are shown in Fig. 7. (b) As in (a), but for the

simulation with a 5 1.6 3 1024 K21.
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spanning such a wide range of scales, nor does such a limit

appear to be relevant for the ocean or the atmosphere.
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