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ABSTRACT

The decomposition of an eddy flux into a divergent flux component and a rotational flux component is not
unique in a bounded or singly periodic domain. Therefore, assertions made under the assumption of uniqueness,
implicit or explicit, may be meaningless. Nondivergent, irrotational perturbations are allowed to any decom-
position that may affect naive interpretation of the flux field. These perturbations are restricted, however, so that
unique diagnostics can be formed from the flux field.

1. Introduction

Many authors have suggested that the relationship
between the eddy flux and the large-scale gradient of a
nearly conserved quantity (e.g., potential vorticity, tem-
perature) is improved by dividing the eddy flux into
purely divergent and purely rotational parts. This de-
composition has a long history in electrodynamics (e.g.,
Griffiths 1998; Jackson 1998); it is relatively new to
oceanography and meteorology.

The flux decomposition was introduced in this context
to the geophysical community by Lau and Wallace
(1979) in an attempt to show that the divergent portion
of the flux is more aligned down the gradient of the
mean field than the total flux. Previously, the wind itself
had been decomposed from data (e.g., Sangster 1960).
In this paper, we shall demonstrate the difficulty with
such an attempt in a region with boundaries.

Helmholtz’s theorem (e.g., Morse and Feshbach
1953) asserts that the decomposition into rotational and
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divergent fluxes is unique in an infinite domain, assum-
ing the fluxes decay rapidly enough as infinity is ap-
proached (faster than r22 in three dimensions, faster than
r21 in two; r is the distance from the origin). Morse and
Feshbach assert that the proof of this theorem holds in
a bounded domain as well, so long as the fluxes are
taken to be zero everywhere outside of the domain.
Though mathematically convenient, this reasoning uses
information unavailable in the physical world.

In the physical world, we have information only
about the flux to be decomposed and its boundary con-
ditions. The divergent and rotational fluxes cannot be
observed individually, and without using additional
constraints these fluxes and their boundary conditions
cannot be determined uniquely. Any physical theory
ought not to depend on either of these components
individually.

In this note, examples are used to demonstrate that
there is no unique decomposition of an eddy flux into
divergent and rotational parts in a bounded domain. In
addition, an example is presented for a singly periodic
domain. Last, some alternative diagnostics that provide
information about the divergent and rotational parts of
a flux are presented. Unlike the flux decomposition,
these diagnostics are unique, so they are of greater
potential use in the study of eddy flux parameteriza-
tions.
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2. Analysis

Consider a vector field intended to represent anv9q9
eddy advection flux of a nearly conserved quantity q by
the 3D flow v. The overbar denotes an average over
many realizations or over a time longer than eddy time-
scales, v 5 1 v9, and q 5 1 q9. In this section, av q
method for dividing such a flux into divergent and ro-
tational components is presented.

To construct a decomposition into rotational and di-
vergent fluxes, one can use potentials: the divergent flux
is a gradient of a scalar, and the rotational flux is a curl
of a vector potential:

v9q9 5 =f 1 = 3 A, (1)

v9q9 5 = 3 A, (2)rot

v9q9 5 =f. (3)div

The scalar potential is f, and the vector potential is A.
Any continuous vector field can be represented by a
scalar potential and a vector potential, but the choice of
potentials is not unique. The resulting fluxes ( andv9q9 rot

) are invariant under a gauge transformation ofv9q9 div

the vector potential (A9 5 A 1 =l) and to an addition
of a constant to the scalar potential (f9 5 f 1 C). An
additional indeterminacy is present if the boundary con-
ditions on the scalar potential and each component of
the vector potential are not known individually. This
kind of indeterminacy will not affect the total flux, but
it may affect the divergent and rotational fluxes.

We can calculate field equations for the potentials by
taking derivatives of the known field:v9q9

2= · v9q9 5 ¹ f and (4)
2= 3 v9q9 5 = 3 (= 3 A) 5 =(= · A) 2 ¹ A. (5)

The choice of a particular gauge sets the value of = ·A.
The boundary conditions for these field equations are

not complete. The only physical variable is the total
flux, so there are boundary conditions only on the total
flux. A typical boundary condition is impermeability:
n̂ · v9 5 0. There usually is also another boundary con-
dition that makes the tangential components t̂ vanish as
well (e.g., q9 5 0, or no slip t̂ · v9 5 0). Thus, the
boundary conditions on the decomposed fluxes are usu-
ally

n̂ · (v9q9 1 v9q9 ) 5 0 (6)div rot

n̂ 3 (v9q9 1 v9q9 ) 5 0, (7)div rot

where n̂ is the outward unit vector normal to the bound-
ary.

For geophysical fluids, one is usually attempting this
decomposition for fluxes within a two-dimensional sur-
face, although the fluxes and potentials may depend on
the third (vertical) dimension. For example, in quasi-
geostrophic and shallow water models, the fluxes of
interest lie in the horizontal x, y plane although they are
also functions of height z. For simplicity, in this note

we restrict our examples to two dimensions, although
the indeterminacy is also present in three dimensions.
For two-dimensional fluxes, we need only consider the
vertical component of the vector potential and choose
to set its other components to zero. In a similar way,
we consider only the horizontal components of the gra-
dient of the scalar potential. Thus,

v9q9 5 = f 1 k̂ 3 = x, x [ 2k̂ · A, (8)h h

where the subscript h indicates that derivatives are taken
only in the horizontal, so that =h 5 (]x, ]y, 0). The field
equations are

2¹ f 5 = · v9q9 (9)h

2¹ x 5 k̂ · = 3 v9q9. (10)h

The boundary conditions are

]f ]x
n̂ · (v9q9 1 v9q9 ) 5 2 5 0 (11)rot div ]n ]s

and
]f ]x

n̂ · [k̂ 3 (v9q9 1 v9q9 )] 5 1 5 0, (12)rot div ]s ]n

where ]/]n is the derivative in the direction outward
normal to the boundary, and ]/]s is the derivative in the
direction along the boundary at a right angle to the left
of n̂. The boundary conditions on the divergent and
rotational fluxes individually are unknown; only the
boundary conditions on the total flux are known.

Suppose the decomposition into divergent and rota-
tional fluxes were unique. One could choose any bound-
ary condition that was consistent with one of those
above, for example ]f/]n 5 x 5 0. There is a choice
of boundary condition because the problem for the po-
tentials is only second order, requiring only a single
boundary condition, while the total flux is consistent
with both an impermeability boundary condition and a
frictional one. With either choice, the field equations
and the boundary conditions are set, and the divergent
and rotational fluxes would be determined.

The decomposition is not unique, however. Consider
a different decomposition, formed with potentials f9
and x9, that may individually satisfy different boundary
conditions than the original f and x. The new fields
will also obey Eqs. (9)–(12) if the perturbation poten-
tials p and c, which are the difference between the two
solutions, satisfy the following equations:

2 2¹ p 5 ¹ c 5 0, p [ f9 2 f, c [ x9 2 x, (14)h h

with boundary conditions

]p ]c
0 5 2 (14)

]x ]y

]p ]c
0 5 1 . (15)

]y ]x

There is an entire class of functions p and c that satisfy
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these equations. To generate a perturbation for any
choice of f and x, one chooses p such that p 5 02¹h

with any boundary conditions whatever, and then a c
can be easily generated from p. In the next section, we
give some examples of such perturbations.

The functions p and c must be harmonic within the
domain—that is, p 5 c 5 0—and satisfy the Cau-2 2¹ ¹h h

chy–Riemann relations [Eqs. (14) and (15)] on the
boundaries. Solutions to this problem are such that p 1
ic is an analytic function of z 5 x 1 iy. The reverse is
true as well; the analytic functions seem to exhaust the
solutions of Laplace’s equation [Eq. (13)] with Cauchy–
Riemann boundary conditions [Eqs. (14) and (15)].
Thus, any analytic function f (z) with no singularities
in the domain is such that its real part represents the
potential p and the imaginary part i represents the po-
tential c. The choice of possible perturbations is oth-
erwise unlimited. For example, we could choose f (z)
5 z and find that p 5 x and c 5 y are solutions to Eqs.
(13)–(15). More interesting examples are discussed in
the next section.

The theory of analytic functions comes in handy in
understanding the difference between the decomposition
of the eddy fluxes in a finite domain and in an infinite
domain. In a finite domain, there are no restrictions on
possible singularities outside the domain, and the ana-
lytic function f (z) can be nontrivial. In an infinite do-
main, we require that p and c be harmonic everywhere
on the plane; thus f (z) cannot have any singularity in
the plane. If we further request that p and c decay fast
enough to prevent singularities at infinity, then the
choice is restricted to the only analytic function with
no singularities: a constant. This constant is typically
set to zero by requiring that p and c vanish at infinity.
Regardless, a constant value in the potentials does not
affect the fluxes.

Flux decomposition in a doubly periodic domain or
on a sphere without continental boundaries is also
unique. In these cases, there are no boundaries at which
singularities can be concealed. Singularities in p and c
within the domain are not allowed, because they will
be discontinuous and their derivatives (the fluxes) will
not exist. If we demand that p and c are continuous
everywhere, the only solution is again f (z) 5 constant.

Most geophysical problems have a boundary config-
uration in which flux decomposition is not unique. The
only way that uniqueness can be obtained is to decom-
pose the fluxes in a domain that has no boundary regions
in which an arbitrary singularity in p 1 ic can hide.
Therefore, decompositions on the sphere, doubly peri-
odic, and infinite domain without singularities at infinity
are unique. In any domain with boundaries, however,
no uniqueness is possible without additional constraints.

3. Example perturbations

A simple example of a perturbation to the potentials
corresponds to the analytic function f (z) 5 z 2 iz:

p 5 x 1 y (16)

c 5 2x 1 y. (17)

The resulting change in the fluxes is

Dv9q9 5 (1, 1) and (18)div

Dv9q9 5 (21, 21). (19)rot

Thus, the perturbation to the divergent flux is constant,
and the perturbation to the rotational flux is also con-
stant. The two perturbations add up to zero as required.
The existence of this perturbation is not really a surprise;
one is accustomed to fluxes being specified only up to
a meaningless constant.

A second example is less trivial, corresponding to the
analytic function f (z) 5 z2:

2 2p 5 x 2 y (20)

c 5 2xy. (21)

The change in the fluxes is

Dv9q9 5 (2x, 22y) (22)div

Dv9q9 5 (22x, 2y). (23)rot

Consider the effect of this perturbation if the total flux
were 5 (2kx, 0). We see that, although one choicev9q9
of the divergent flux is 5 (2kx, 0), another equalv9q9 div

ly valid choice would be 5 [2(k 2 2)x, 2 2y]v9q9 div

with 5 (22x, 2y). Therefore, if diffusivity werev9q9 rot

measured by comparing the divergent flux with a large-
scale gradient, it could easily be in error in both mag-
nitude and direction.

The perturbation potentials satisfy the Cauchy–Rie-
mann relations not only at the boundary, but everywhere
in the basin. Therefore, they apply to basins of any finite
shape. Notice, though, that, in both of the examples
presented so far, the perturbations are unbounded at in-
finity and therefore are excluded by the Helmholtz the-
orem. In a finite basin, however, there is no physical
reason to eliminate either perturbation.

The perturbation to the boundary condition can be
even more complicated. Consider decomposing the flux
in a square two-dimensional basin with x and y ranging
from 0 to 1. Choose any perturbation to the boundary
condition on f at the y 5 0 boundary. We can solve
for the perturbation throughout the basin by Fourier
transform, producing the following:

` sinh[kp(1 2 y)]
p 5 a sin(kpx) (24)O k5 6sinh(kp)k50

` cosh[kp(1 2 y)]
c 5 2a cos(kpx) , (25)O k5 6sinh(kp)k50

where k is the index of the Fourier expansion, and the
ak are the Fourier coefficients found by Fourier trans-
form of the perturbation along the boundary. As in the
two preceding examples, this perturbation obeys the
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Cauchy–Riemann equations everywhere, so it would be
acceptable in any basin of finite dimension. The analytic
function corresponding to this solution is

` cos[kp(z 2 i)]
f (z) 5 a . (26)O k sin(ikp)k50

Because the equations on p and c are linear, similar
solutions describing perturbations from the other bound-
aries may also be superposed.

This perturbation to the potentials works equally well
in a domain with a periodic boundary at x 5 0 and x
5 2. The boundary is extended so that both p and c
will be periodic in x. Note, however, that this pertur-
bation to the fluxes would be discontinuous in y in a
doubly periodic basin.

This example also illuminates the way that unique-
ness is approached as one moves the boundaries farther
and farther away toward the limit of the infinite domain.
As the distance from the boundary is increased, the
effects of singularities hidden in the boundaries dimin-
ish, because the harmonic field from a point singularity
decays as r21 in two dimensions, and the resulting fluxes
from this point singularity will decay as r22 away from
the boundaries. Singularities with larger spatial structure
will decay more slowly (e.g., the examples in this sec-
tion decay more slowly because they require the domain
to be surrounded by singularities), so the perturbations
p and c can only be discounted for small-scale variations
far away from the boundary. In the preceding Fourier
transform example, one sees that the decay scale away
from the boundary is the same as spatial scale along
the boundary. If an additional constraint is added to the
decomposed fluxes—for example, if they are bounded
in magnitude at the boundary—then this decay could
be used to show that the decomposed fluxes are ap-
proximately unique far away from the boundaries, but
such an argument would require careful treatment.

So, there are infinitely many perturbations available.
Figure 1 gives four different realizations of a divergent
flux. All four are completely consistent with the same
total flux.

The preceding examples demonstrate that the lack of
uniqueness in bounded regions is due to the freedom to
choose p arbitrarily along a boundary. In two or three
dimensions, a perturbation can be constructed by choos-
ing p to be any harmonic function, and then p can be
used to generate the boundary conditions for the Laplace
equation on the vector potential (which is simply c in
the two-dimensional case). In two dimensions, the per-
turbation can be constructed by choosing any analytic
function as p 1 ic. In the spirit of complex integration
of analytic functions, the variations in p and c at the
boundary can be considered as singularities anywhere
outside the domain. If there are no boundaries in the
problem to conceal singularities, and there are no sin-
gularities at infinity, only then is the decomposition
unique.

4. Unique versus arbitrary diagnostics

The decomposition of an eddy flux into divergent and
rotational fluxes is not unique in a bounded domain.
However, the variation among the possible decompo-
sitions is limited. The perturbations to the fluxes must
be irrotational and nondivergent, and they cannot con-
tribute to the total flux. Thus the curl, divergence, and
the value of total flux are all well defined. Some integrals
of the fluxes are also unique. In this section we present
some diagnostics of the fluxes that are unique because
they are invariant under the perturbations described in
the previous sections.

The flux divergence and the flux curl are excellent
indicators of the physical import of the flux. It is these
derivatives that appear in the equations for eddy inter-
action with the mean flow. However, it is often the case,
both in numerical simulations and data analysis, that

is poorly resolved or poorly averaged ( oftenv9q9 v9q9
must be averaged over very long times to obtain a
smooth field). When the is too noisy to take sensiblev9q9
derivatives, the integrals of the divergence and curl are
more useful diagnostic tools.

Integrals of the flux divergence over well-chosen ar-
eas reveal much about the divergent flux. Because of
the divergence theorem, an area integral is an unam-
biguous method of determining the value of the diver-
gent flux, not in one location, but on average around
the bounding contour of the integration. For an area A
bounded by the contour S,

= · v9q9 dx dy 5 v9q9 · n̂ dlEE R
A S

5 v9q9 · n̂ dl, (27)divR
S

where n̂ is an outward normal unit vector. A similar
diagnostic also exists in three dimensions with volume
integration of the region bounded by a surface. This
integration produces a unique value regardless of choice
of from the infinite class described in the pre-v9q9 div

ceding sections. The contribution from the analytic
function perturbations cancels out in the integral. Any
area of interest can be chosen: areas with interesting
forcing, entire oceans, straits of narrows, and so on. If
the area of integration is chosen to be the area within
a mean streamline, the average cross-streamline eddy
flux is revealed. With the area of integration chosen to
be within a contour, the average eddy flux is assessedq
as up- or downgradient.

By integrating along a closed contour, the average
rotational component of the flux can also be measured
using Stokes’s theorem. As in the case of the integral
of the divergence, a similar diagnostic exists in three
dimensions with volumes replacing areas and surface
replacing contours. The same areas of integration sug-
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FIG. 1. These four flux fields depict four realizations of for the same hypothetical total flux. All four realizations have the samev9q9 div

divergence and are irrotational. The field is the potential vorticity in a region of a numerical model of barotropic flow in a basin withq
boundaries at x 5 (0, 1) and y 5 (0, 1). A region within this domain is selected because the mean field was interesting but not overly
complicated. (a) Realization generated to be exactly down the mean gradient: 5 20.2= . The other three realizations are generatedv9q9 qdiv

by the addition of harmonic function perturbations: (b) p 5 y2 2 x2 1 2x, (c) p 5 2sin(py)epx, and (d) p 5 sin(10px)e10p(y21) 2 sin(6py)e6p(x21/4)

2 sin(6py)e26px. The arrows representing the divergent flux have been rescaled for visualization in each figure.

gested in the preceding paragraph will serve here as
well:

k̂ · = 3 v9q9 dx dy 5 v9q9 · t̂ dlEE R
A S

5 v9q9 · t̂ dl. (28)rotR
S

The vector t̂ is unit length and tangent to the contour
of integration, pointing in a counterclockwise sense.

As an example of how the integral constraints might
be used to diagnose the effects of eddies, consider the
double-gyre circulation of Marshall (1984). The integral
of the eddy flux divergence over the whole basin will
vanish, but the integral over only one of the two gyres
will not. The amount by which the integral differs from

zero will be the integral of the divergent intergyre eddy
flux.

It is possible to construct other unique diagnostics
addressing the divergent or rotational fluxes using the
divergence theorem and Stokes’s theorem. One can
imagine correlations or other averages being constructed
uniquely, but great care must be taken to heed the lack
of uniqueness in any choice of flux decomposition.

Marshall and Shutts (1981) and Marshall (1984) gen-
erate a decomposition of physical relevance in the case
where q 5 q(x). This assumption allows them to single
out a term in the eddy enstrophy equation (1/2)(d /x
d )k̂ 3 = ). When q 5 q(x), this term coincides with2q q9
a choice of the rotational flux. This method gives im-
mediate physical meaning to the choice of the rotational
flux. This method has also been applied to oceanograph-
ic data (e.g., Cronin and Watts 1996). However, the



FEBRUARY 2003 483N O T E S A N D C O R R E S P O N D E N C E

approximation that q 5 q(x) is sometimes inappropriate
and depends strongly on the frictional boundary con-
ditions used [as discussed in Roberts and Marshall
(2000)].

Bryan et al. (1999) avoid the indeterminacy altogether
by comparing the magnitude of the flux divergence and
the magnitude of the total flux. They find that, in their
calculations, these fields are correlated.

Lau and Wallace (1979) perform a hemispherical de-
composition into the rotational and divergent parts.
They acknowledge the indeterminacy in the boundary
conditions and eventually set f and x to zero on their
boundary at 208N latitude. They assert that other bound-
ary conditions were also used and that no significant
change in the decomposition was observed, although
the specifics of these calculations are not given.

Often other arguments are used to rationalize a par-
ticular choice out of the many possible decompositions
into rotational and divergent fluxes. One can choose
(arbitrarily) to impose the same boundary conditions on
the divergent or rotational fluxes individually as apply
to the total flux (e.g., Roberts and Marshall 2000). One
can arbitrarily set the divergent fluxes to zero outside
of the region in which they are known, as in Watterson
(2001). Using inverse methods, one could determine the
decomposition with the minimum integral of | | 2v9q9 div

or the decomposition with the divergent flux that is the
‘‘most downgradient’’ [the one minimizing the quantity
( 1 k= ) · ( 1 k= )], and so on ad infin-v9q9 q v9q9 qdiv div

itum. Different physical interpretation will motivate dif-
ferent choices. It cannot be overemphasized that these
represent choices of a flux field decomposition, not the
flux field decomposition. If a unique decomposition is
obtained with additional constraints, the physical rele-
vance of a divergent or rotational part of the total flux
relies upon the physical relevance of those constraints.

5. Conclusions

In this note, numerous examples have been given to
show that the decomposition of a flux into divergent
and rotational parts is not unique when boundaries are
present. Just as the constant value of a potential has no
physical meaning, the harmonic part of a potential lead-
ing to a divergent or rotational flux has no physical

meaning in a bounded domain. If the flux decomposition
is calculated, it is perilous to ignore this indeterminacy.

In construction of en eddy parameterization, it is
sometimes useful to consider a solely divergent eddy
flux field. However, the authors recommend that ‘‘down-
gradient’’ eddy parameterizations be considered not as
representative of the divergent flux, but as a path to the
divergence itself, which is unambiguous. As emphasized
by Lorenz (1967), the divergence is the dynamically
important quantity.

Because of the indeterminacy, use of the divergent
or rotational fluxes as a diagnostic of the effects of
eddies is extremely difficult. Because the divergent com-
ponent of the flux is ambiguous, the validity of a pa-
rameterization can not be judged adequately by com-
paring a choice of divergent flux component directly
with the flux from the parameterization. However, the
unique diagnostics presented here are useful in assessing
the validity of parameterizations and the effects of eddy
fluxes on the mean fields.
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