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ABSTRACT

Fox-Kemper et al. (2007a) propose a parameterization for restratification by mixed layer eddies that develop
from baroclinic instabilities of ocean fronts. The parameterization is cast an overturning streamfunction that is
proportional to the product of horizontal buoyancy gradient, mixed layer depth, and inertial period. The param-
eterization has remarkable skill for an extremely wide range of ML depths, rotation rates, vertical and horizontal
stratifications. In this paper a coarse resolution prognostic model of the parameterization is compared with subme-
soscale mixed layer eddy resolving simulations. The parameterization proves accurate in predicting changes to the
buoyancy. The climate implications of the proposed parameterization are estimated by applying the restratification
scaling to observations: the mixed layer depth is estimated from climatology, and the buoyancy gradients from
satellite altimetry. The vertical fluxes are comparable to monthly mean air-sea fluxes in large areas of the ocean and
suggest that restratification by mixed layer eddies is a leading order process in the upper ocean. Critical regions for
ocean-atmosphere interaction, such as deep, intermediate, and mode water formation sites, are particularly affected.

1. Introduction

Boccaletti et al. (2007) (hereafter BFF) and Fox-
Kemper et al. (2007a) (hereafter FFH) study the
restratification due to ageostrophic baroclinic insta-
bilities that develop at fronts in the ocean surface
mixed layer. BFF and FFH study the restratifica-
tion once the instabilities have reached finite am-
plitude, by focusing on a mixed layer (ML) front
in a reentrant channel. First, the front geostrophi-
cally adjusts (Tandon and Garrett, 1995), and then
yields to ageostrophic baroclinic instabilities (Stone,
1972a). FFH propose that the primary effect of
these instabilities on the mean flow is to overturn
the front, converting horizontal density gradients to
vertical gradients.

The baroclinic instabilities that lead to finite-
amplitude mixed layer eddies (MLEs) occur on
lengthscales near the deformation radius of the ML,
which is O(1km) because of the weak stratifica-
tion in the ML. General circulation models (GCMs)
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used for climate studies do not resolve these small
scales, so the overturning effect of MLEs must
be parameterized. Even ”eddy-resolving” GCMs
with O(10km) grids require parameterization of the
still unresolved submesoscale. The buoyancy fluxes
needed for the buoyancy budget in a GCM may be
spectrally decomposed into three categories, fluxes
by resolved large-scale and mesoscale phenomena
(ub)1, submesoscale fluxes (u′b′), and smaller scale
turbulent, solar, and diffusive fluxes F . The dou-
ble overline indicates horizontal averaging onto the
grid of the coarse model, and primes denote sub-
mesoscale perturbations from the coarsened aver-
ages. The momentum fluxes associated with MLEs
are weak and inconsequential to the momentum re-
solved in the GCM, so only MLE buoyancy fluxes
will be considered here. The buoyancy equation for
the evolving front in the coarse model becomes,

bt +∇ ·
[
ub + u′b′

]
= −∇ · F . (1)

Where b = −gρ/ρ0 is the buoyancy, and u is the
1for simplicity, mesoscale features are considered part of

the ’resolved’ fluxes whether they are actually resolved or
represented with a parameterization.
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three dimensional velocity. FFH argue that the bulk
of the MLE restratification may be written as an
overturning streamfunction,

u′b′ ≈ Ψ×∇b. (2)

FFH also provide a scaling and vertical structure for
the streamfunction,

Ψ = Ce
H2∇b

z
×ẑ

|f | µ(z), (3)

µ(z) =
[
1−

(
2z
H + 1

)2] [1 + 5
21

(
2z
H + 1

)2]
. (4)

Where f is Coriolis parameter, and H and ∇b
z

are
the ML depth and buoyancy gradient averaged ver-
tically over the ML in the coarse GCM. The effi-
ciency factor Ce is determined to be in the range
0.06 − 0.08 by fitting to 241 simulations varying in
front width and strength, ML depth, initial strati-
fication and velocity, viscosity, presence of diurnal
convection, interior stratification, and rotation rate
(Fig. 1, reproduced from FFH). The value used for
all prognostic simulations here is Ce = 0.06, which
is the best fit for simulations without diurnal con-
vection.

Since ∇·[∇×(Ψb)] = 0, the MLE flux given in (1)
can be written as an advection by an eddy-induced
velocity u∗,

bt +∇ ·
[
(u + u∗)b

]
= −∂F

∂z
, (5)

u∗ ≡ ∇×Ψ. (6)

Recall that any mesoscale eddy effects are included
in ub. This form lends itself to easy numerical imple-
mentation (Appendix A). The formulae (3) through
(6) parameterize the most important effects of MLEs
for GCMs.

This paper features two applications of the pa-
rameterization. First, a prognostic coarse resolution
simulation using the parameterization is compared
directly to a submesoscale-resolving simulation (Sec-
tion 2). Second, the climate impact of MLE restrat-
ification is estimated by applying the parameteriza-
tion to data from satellite observations and clima-
tologies of the upper ocean (Section 3). Section 4
concludes.

2. Prognostic Model Comparison

BFF and FFH study MLE restratification by focus-
ing on a single ML front in a channel, floating over a
more stratified ocean interior. The front at time zero
may be considered as the edge of a recently strongly

Figure 1: Magnitude of diagnosed time average of

w′b′/by from 3d MITgcm submesoscale eddy resolving
simulations versus the magnitude of the time average of

Ceb
z

yH2/|f | with Ce = 0.08. A total of 241 simulations
are shown varying parameters (with and without diurnal
cycle, geostrophically balanced initially or not, varying
front width and strength, varying ML depth, varying
friction).

vertical mixed ocean patch or a result of straining of
a large-scale gradient by a mesoscale field. Depend-
ing on details of the initial conditions, the front soon
undergoes gravitational slumping or symmetric in-
stabilities. After these initial transients lasting only
a few inertial periods, the along-front geostrophic
shear goes baroclinically unstable. Restratification
begins in earnest as the instabilities reach finite am-
plitude and slump over the isopycnals. Fig. 2 shows
two snapshots of temperature from a typical simu-
lation: just after the appearance of MLEs and later
when MLEs have enlarged due to an inverse cascade.

FFH propose a parameterization that reproduces
the effects of MLEs relevant to models that do not
resolve the submesoscale. It consists primarily of
an overturning streamfunction that mimics the adi-
abatic slumping of isopycnals. FFH note that MLEs
also drive diabatic buoyancy fluxes, which they refer
to as ”residual” eddy fluxes, because they are what
is left over of u′b′ beyond the adiabatic fluxes given
by Ψ×∇b. The residual fluxes include an horizon-
tal buoyancy flux that acts to widen the front and
a vertical downgradient buoyancy flux at the ML
base. In this section a prognostic model that evolves
buoyancy according to the parameterization in (3)
through (6) is compared directly to a submesoscale
resolving simulation. The bulk of MLE restratifi-
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a)

b)

Figure 2: Temperature (oC) during a typical simulations of the adjusting front. (Black contour interval=0.01oC,
white contour interval=0.1oC.) Shortly after geostrophic adjustment, the front forms wavelike baroclinic instabilities
(upper panel), which enlarge in time and slump the front (lower panel).
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Symbol Name Value
Nint Interior stratification 64f
Nml ML stratification 0
M2 front strength −(2f)2

f Coriolis parameter 7.29× 10−5s−1

Lf front width 18km
∆x,∆y horiz. grid 450m

∆z vert. grid 5m
ν vert. viscosity 10−4m2/s
κv vert. diffusivity 10−5m2/s
Sm Smagorinsky Coeff. 1
κh explicit horiz. diff. 0

Table 1: Constants used in the 3d MITgcm simulation
shown here.

cation is shown to be captured by the overturning
streamfunction. Including the residual fluxes modi-
fies the solution slightly, but at a significant numer-
ical cost.

A typical 3d simulation (shown in Fig. 2) is chosen
from the full set of 241 simulations (shown in Fig. 1)
used to validate (3), to be called the 3d model for
brevity. The 3d model initial conditions are no ini-
tial velocity and a density profile of the form,

b = N2(z + H) +
LfM2

2
tanh

[
2(y − yo)

Lf

]
+ bo, (7)

N2 =
{

N2
ml ∀ : z > −Ho

N2
int ∀ : z <= −Ho

(8)

The basin average of bz will be denoted by N2 be-
low. Parameter values are given in Table 1 and cor-
respond to frontal strengths commonly observed in
the ocean–they require only a 0.2◦C temperature
difference across an 18km front.

The parameterization is implemented in a 2-
dimensional model of the y − z plane, to be called
the 2d model for brevity. The 2d model solves for
the advection of the coarse resolution buoyancy b by
the parameterization streamfunction in (3), using
the instantaneous values of b and H. As this model
is only 2d, it cannot develop baroclinic instabilities,
so their effect is represented only by the parameter-
ization. The only additional ingredients beyond the
equations (3) through (6) are an horizontal bound-
ary condition of Ψ = 0 to close the domain, and
convective adjustment of buoyancy to eliminate oc-
casional gravitationally unstable profiles caused by
discretization errors.2 Despite its simplicity, the 2d

2The gravitationally unstable discretization errors are not

Symbol Name Value
∆y horiz. grid 9.6km
∆z vert. grid 5m
κv vert. diffusivity 10−5m2/s
κh explicit horiz. diff. 0

Table 2: Constants used in the 2d model of the MLE
parameterization.

model is fully prognostic and evolves independently
given only an initial b field as input. The numerical
details of the 2d model are given in Appendix A.

The 2d model can be initialized with any initial
b, but using a snapshot of the buoyancy from the 3d
model allows side-by-side comparison of the b evo-
lution. The parameterization is intended for use in
GCMs that will be coarser than the 3d model in both
∆x and ∆y, so in addition to representing only the
along-channel average in x, the 2d model is coars-
ened in the cross-channel direction y (Table 2). For
equal comparison, doubly overlined variables from
the 3d model undergo both an along-front average
in x and an averaging in y to the coarser resolution
of the 2d model. The 2d model resolution is in the
typical range for ”mesoscale eddy resolving” GCMs.

The 2d model is initialized from b diagnosed from
the 3d model on day 7.3 The two models use
the same diffusivity and advection scheme. The
2d model has a larger timestep than the 3d model
(although high accuracy is guaranteed by adaptive
time-stepping scheme used in the 2d model).

a. Reproducing the Streamfunction

A comparison of the frontal spindown in the 2d
model and the 3d model (with variables averaged
onto the 2d model grid) is shown in Fig. 3. The
overturning streamfunction in the 3d model is di-
agnosed in the Held and Schneider (1999) form,
Ψhs = w′b′/by: the natural choice here as it van-
ishes at the surface (among other desirable proper-
ties, see below). The 2d model captures the essential

inherent to the parameterization, but to the paucity of the
2d model itself (little diffusivity and no gravity waves). Any
realistic model with complete physics should not require con-
vective adjustment.

3Seven days are required to reach finite amplitude in
the 3d model because the initial perturbations are artifi-
cially small. In test simulations, and presumably also the
ocean, larger initial perturbations develop into finite ampli-
tude MLEs within one day. Thus MLE growth is fast enough
to compete with other ML processes and wind changes, etc.
(See also BFF).



8 October 2007 FOX-KEMPER and FERRARI 5

a) d)

b) e)

c) f)

Figure 3: Streamfunction (Ψhs, thick) and smoothed buoyancy (b, thin) from (a-c) the 2d MLE parameterization at
9.6km resolution (dashed line shows diagnosed ML depth) and (d-f) the 3d MITgcm simulation at 450m resolution.

The 2d model buoyancy is initialized from the 3d model b at day 7. Variables from the 3d model are averaged onto
the coarse 2d model grid, and contour intervals are the same in all figures. The timing of fig. 3d was selected to be
a snapshot in the middle of an inertial oscillation of Ψ in the 3d model.

shape and magnitude of the streamfunction and re-
produces the smoothed buoyancy of the 3d model
remarkably well, even though it has a dimension
fewer and twenty times coarser cross-channel resolu-
tion. Both in the 2d and the 3d simulation, the over-
turning is confined to the ML frontal region. FFH
remark that the scaling used to convert extraction
of potential energy to a local flux of buoyancy relies
upon replacing a basin-wide average of w′b′ with a
local value in y. The strong agreement between the

3d and 2d models confirms this assumption. Test-
ing other 3d simulations from FFH confirms that
the agreement between the 2d and 3d models cho-
sen here is typical.

The instantaneous streamfunctions do differ be-
tween the 3d and 2d models. If the 3d simulation is
not smoothed to the coarser grid of the 2d model,
smaller structures appear (Fig. 4). However, these
cells are due to transient powerful MLEs that tem-
porarily bias the along-channel averaging. Their
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Figure 4: The equivalent to Fig. 3d without coarse
grain averaging in y.

anomalous effect would vanish under sufficient en-
semble averaging. Furthermore, the magnitude of
the streamfunction is not matched exactly in any
given snapshot, partly due to temporal fluctuations
in the MLE statistics, and partly due to the presence
of internal gravity waves. The latter add variabil-
ity to snapshots of Ψhs but do not contribute irre-
versible restratification. The former are of negligible
importance, because they do not affect the primary
parameterization goal of representing the changes
to buoyancy, which are a time-integrated–and thus
smoothed–consequence of the streamfunction.

b. Reproducing the Restratification

The buoyancy fields in the 2d and 3d models are
remarkably similar. The width of the front and the
isopycnal slope are nearly indistinguishable for more
than a week (Fig. 3). At later times boundary effects
become important and the simulation is stopped be-
cause the sidewalls are an artifact of the numerical
simulation. The primary purpose of the parameter-
ization is to reproduce the restratification of strong
baroclinic fronts, as explained in FFH. Restratifi-
cation controls the depth to which subsequent mix-
ing events will penetrate, and hence affects air-sea
fluxes and surface to subsurface exchange. Fig. 5a
shows that the average rate of restratification is well
captured by the parameterization. Comparisons be-
tween 2d prognoses of other 3d model simulations
indicates that discrepancies shown in Fig. 5a are
typical: N2 forecasts remain within a factor of 2
of the 3d model while the restratification covers up
to two orders of magnitude increase in N2.

FFH propose two different forms for the vertical
structure of Ψ which differ in their accuracy. They
are compared in Fig. 5b. The first, µ(z), is correct

to second order in Rossby number and is quartic.
The second, µ2(z) is quadratic and correct only to
first order in Rossby number,

µ(z) =
[
1−

(
2z
H + 1

)2] [1 + 5
21

(
2z
H + 1

)2]
, (9)

µ2(z) =
[
1−

(
2z
H + 1

)2]
. (10)

A quadratic vertical structure is common to many
eddy parameterizations (e.g., Stone, 1972b; Canuto
and Dubovikov, 2005). It is, after all, the simplest
form that is symmetric about the ML center (as in
simulations) and vanishes at the surface and ML
base (trapping the overturning in the ML). It pro-
vides a nearly constant rate of restratification at all
depths in the ML, as the eddy-induced velocity shear
is constant (ẑ ×Ψzz). The resulting profiles of N2

are nearly depth-independent (thin dashed lines in
Fig. 5b). In contrast, restratification by the quar-
tic form (µ(z)) proceeds more quickly at the surface
and ML base than in the interior–a behavior of the
3d model (Fig. 5b). Given the tiny additional cost
of calculating µ(z) over µ2(z), the former is recom-
mended.

There are a few small discrepancies in the verti-
cal structure of N2 between the 2d and 3d models
in Fig. 5b. First, N2 is underestimated near the
surface in the 2d model. The near-surface restrat-
ification in the 3d model is the result of frictional
Ekman fluxes, generated by the no stress boundary
condition at the surface, that drive light water over
dense across the frontogenetic meanders (Fig 2). No
attempt was made to reproduce this effect in the pa-
rameterization for two reasons. First, the addition
of a diurnal cycle generates ample nighttime turbu-
lence to overcome this restratification and substan-
tially more solar daytime near-surface restratifica-
tion. Second, much of this effect would already be
present in a GCM with a full momentum equation.

A second discrepancy occurs near the base of the
ML (Fig. 5b near -180m). There the 2d model again
underpredicts restratification. The 2d model is par-
ticularly sensitive to the algorithm for determina-
tion of ML depth. As the ML restratifies the di-
agnosed ML depth becomes too shallow in this run
of the 2d model, and restratification does not pene-
trate as deeply as the 3d model restratification. In-
creasing the vertical diffusivity from 10−5m2/s to
3·10−5m2/s at all depths smooths out the base of the
ML and allows the algorithm to work more robustly
as shown in Fig. 5c. The value and physical signif-
icance of the diffusivity tested are discussed further
in section 2c.
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Figure 5: a) The vertical average of N2 over −175m<
z < −25m and b) snapshots of N2 from the 2d parame-
terization with two different vertical structure functions
and the 3d simulation. c) is like b) but for a 2d model
with κv = 3 · 10−5m2/s, three times larger than in b).

c. Reproducing the Eddy Fluxes

The streamfunction in Fig. 3 from the 2d model
agrees well with the 3d model Ψhs = w′b′

by

, and the

restratification rate is well captured, so it is no sur-
prise that the 2d Ψhsby and 3d w′b′ averaged over
a three day window agrees to within 20% in the
ML (Fig. 6a). The previous section demonstrated

that the 2d model has substantial skill in predicting
changes in b in the 3d model, which reflects skill in
predicting the average value of ∇ · u′b′ in the over-
all buoyancy equation (1). However, there are some
discrepancies between the 2d and 3d models worth
noting, not because they have substantial impact,
but because they provide physical insight.

As noted in FFH, the vertical fluxes in the 3d
model reverse sign slightly below the ML base
(Fig. 6a near -210m). This overshoot is due to the
continuity of w′ in the face of discontinuity in isopyc-
nal slope. FFH argue that this might be represented
as a diffusivity, since it is a transport of buoyancy
down the mean vertical gradient. In this particular
simulation, it is equivalent to a κv near 3 ·10−5m2/s
just below the ML base. This diffusivity should
change with parameters, just as w′b′ in the ML does.
The added diffusivity to represent this flux gives
physical motivation to the improvement in Fig. 5c
over Fig. 5b. Fine tuning was not necessary for the
MLE parameterization to improve in Fig. 5c: the
added diffusivity applied in Fig. 5c was crudely ap-
plied throughout the water column and there is little
sensitivity to the magnitude (5·10−5m2/s works sim-
ilarly well). Enhancing κv only near the ML base
provided similar improvement with negligible differ-
ences elsewhere. Of course, even the enhanced value
of diffusivity is relatively low considering that the
model is run for only a few days, so that only very
sharp buoyancy features are notably diffused such
as those near the ML base in Fig. 5b. It is well-
known that ML parameterizations require parame-
terizations of turbulence penetrating below the ML
base to reduce overly strong buoyancy jumps at the
ML base. Typically, the diffusivities found here are
sufficiently small to be overcome in a realistic model
by a turbulence parameterization with penetrating
mixing below the ML base (e.g., Large et al., 1994).
A more complete study of entrainment by MLEs
would be interesting, particularly given the poten-
tial impacts on biology and chemical tracers, but is
beyond the scope of the work here.

The magnitude of the horizontal fluxes in the 2d
and 3d models disagree by approximately a factor of
two (Fig. 6b). Most of the difference is the residual
flux, R, which is the diabatic part of the eddy fluxes
that is not represented an overturning streamfunc-
tion,

u′b′ ≡ Ψ×∇b + R. (11)

In a statistically-steady, adiabatic flow, the fluxes
would be along isopycnals, the skew flux (Ψ × ∇b)
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would capture the full flux, and R would be zero.
However the time dependence here allows the fluxes
to be partly across mean isopycnals to slump the
front. Thus, the mean fluxes are not along mean
isopycnals and R is nonzero (McDougall and McIn-
tosh, 1996). The Held and Schneider (1999) defini-
tion of the overturning streamfunction, Ψhs, is used
here because it makes reproducing the restratify-
ing vertical flux and the surface boundary condition
trivial,

Ψhs ≡
∇b× ẑ w′b′

|∇b|2
. (12)

The definition (12) captures all of the vertical flux,
and leaves an horizontal residual flux.

w′b′ẑ = Ψhs ×∇Hb, (13)

u′Hb′ = Ψhs × ẑbz + R. (14)

Fig. 6b shows that u′Hb′ has roughly the same shape
as Ψhs × ẑbz, so to a good approximation,

u′Hb′ ≈ CΨhs × ẑbz, (15)

R ≈ (C − 1)Ψhs × ẑbz. (16)

The impact including R in the 2d model is studied
using (16).

As an interesting side note, the constant of pro-
portionality C is also the ratio of the isopycnal slope
to the slope along which the eddy fluxes occur (see
also FFH). Eady (1949) notes that C = 2 optimizes
the extraction rate of PE. In the linear solution
C = 2 only at the mid-depth. Fig. 6b shows that
the finite-amplitude problem tends toward a con-
stant value of C at all depths so that PE is extracted
equally throughout the ML. The reason why the to-
tal, skew, and residual horizontal fluxes share the
same vertical structure is thus physically motivated
by energetic considerations. An important compo-
nent of the tendency toward uniform C is the in-
creased restratification near the ML edges. Recall
that the 2d µ(z) model has this effect and the 2d
µ2(z) model does not. The former has v′b′ that re-
sembles the 3d model more than the latter in Fig. 6b,
so increased restratification and shallower isopycnal
slopes near the ML edges are important in equal
extraction of PE at all depths.

FFH argue that R may be safely neglected as
it is smaller than the mesoscale horizontal fluxes.
This view is supported by the agreement in the 2d
and 3d model b in the last section. Fig. 6c shows

that by changes only by 15% over ten days in the
3d model, as MLEs are primarily overturning rather
than diffusing the front. Half of this decrease is cap-
tured without the residual flux, and merely changing
the advection scheme affects by to the same degree
(Fig. 6c, dotted). While adding R from (16) explic-
itly makes up the additional half of the horizontal
flux, it makes the model substantially less stable nu-
merically (see Appendix A). Thus, the modest ef-
fects of MLE residual fluxes are outweighed by the
costs of parameterizing them.

To summarize, a 2d coarse resolution prognos-
tic model based on the parameterization proposed
here does a surprisingly good job at reproducing the
shape and magnitude of the eddy-induced overturn-
ing in a particular 3d simulation. The horizontal
residual flux may be safely neglected, and adding
some vertical diffusivity at the ML base improves
the 2d model somewhat (which will occur naturally
in a realistic model with turbulent transition layer
parameterizations). Running the prognostic model
side-by-side with other 3d simulations gives simi-
lar results: the 3d simulations are generally more
variable in time and space than the parameteriza-
tion, but the integrated effect is reproduced so that
N2 (and M2) remain within a factor of two (within
20%) between the 2d parameterization and the 3d
simulation while N2 increases over two orders of
magnitude.

3. Global Impact Estimate from Observa-
tions

The preceding section demonstrates that the MLE
parameterization is effective, but it does not demon-
strate any sensitivity of the climate system to the
process being parameterized. This section demon-
strates that the vertical fluxes (and associated re-
stratification) obtained from the MLE parameteri-
zation will frequently play an O(1) role in the ML
buoyancy budget, and hence in the interaction be-
tween the ocean and atmosphere.

Satellite observations and ML depth climatologies
are used to infer the regions where MLEs might be
expected to drive large vertical fluxes. The goal is
to estimate the equivalent vertical heat flux due to
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Figure 6: MLE fluxes a) w′b′ and b) v′b′ from the 2d
and 3d models (averaged from day 10.5 to 13.5). The

2d skew fluxes , Ψ × ∇b, attempt to reproduce the 3d

fluxes by (2) and are shown. The advective fluxes, b∇×
Ψ, differ greatly other than in flux divergence, see (22).

c) Comparison of by/f2 from the 3d run and 2d runs
with different parameterizations of the residual flux. All
variables averaged over 20km in y centered on the front.

MLE restratification using the parameterization (3),

cpρw′T ′ =
cpρ

gαT
w′b′

=
cpρ

gαT
Ψ×∇Hb

z

=
cpρ

gαT

Ce

∣∣∣∇b
z∣∣∣2 H2

|f |
. (17)

MLE fluxes are a rearrangement of buoyancy and
not a source, but converting to heat flux units allows
ready comparison of the MLE restratifying fluxes to
air-sea heat fluxes.

The temperature-based ML depth climatologies of
de Boyer Montégut et al. (2004) and a density-based
ML depth based on Levitus and Boyer (1994) are
used to estimate H in (17). The former is more ac-
curate as ML depth is estimated from individual hy-
drographic profiles. However, it is based on temper-
ature profiles rather than density in order to provide
global coverage. For example, de Boyer Montégut
et al. (2004) note that their ML depth estimate is
too shallow north of 60◦ latitude, so the estimate
from (17) may be even an order of magnitude too
small there. They also note poor results in equato-
rial regions due to rainfall, but equatorial data are
not used here. Levitus provides a density-based def-
inition of ML depth, but temperature and salinity
are spatially-averaged before calculating ML depth.
The resulting uncertainty is believed to be even
larger than the bias introduced by using only tem-
perature to determine ML depth. For present pur-
poses, the climatologies are similar enough to ensure
estimates of (17) agree within a factor of four in most
regions. For subsequent results, de Boyer Montégut
et al. (2004) is used.

The horizontal buoyancy gradient is more difficult
to determine. Using a climatology, such as Levi-
tus, vastly underestimates mesoscale gradients due
to smoothing. Using satellite sea surface tempera-
ture overestimates the relevant buoyancy gradients.
Attempts were made with a number of satellite-
based SST products, but all produced vertical fluxes
from (17) so large that they dominated surface fluxes
throughout the global ocean and would rapidly re-
stratify the ML worldwide. If the temperature gra-
dients observed resulted in buoyancy gradients they
would immediately yield to instabilities and slump
down. The observational evidence that these small-
scale temperature gradients persist is an indica-
tion of unobserved compensating salinity gradients
(Rudnick and Ferrari, 1999; Hosegood et al., 2006).

Alternatively, satellite altimetry can be used to
provide a sufficiently accurate estimate of |∇b|.
Stammer (1998) provides a map of EKE = (u2 +
v2)/2 over the extratropical oceans inferred from
satellite altimetry. This kinetic energy can be de-
veloped into an estimate of ML horizontal buoyancy
gradients by the following method. First, the veloc-
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ity shear is assumed to be in thermal wind balance,

|∇b|2 = f2

∣∣∣∣∂uH

∂z

∣∣∣∣2 = 2f2EKE

∣∣∣∂uH

∂z

∣∣∣2∣∣uH

∣∣2 . (18)

Wunsch (1997) shows that the majority of the en-
ergy observed by altimeters is first mode baroclinic.
If the vertical shear of the velocity is assumed to
be first-mode baroclinic, then the buoyancy gradi-
ent estimate can be written in terms of a decay scale
for that mode, Ht,

|∇b|2 = 2f2EKE
1

H2
t

. (19)

Appendix B gives the method for estimating Ht

(based on a WKBJ approximation for the first baro-
clinic mode based on Levitus climatology), but sim-
ply using 1km everywhere yields similar results.
Since altimetry provides roughly 1/4 degree reso-
lution, energy at roughly the first baroclinic mode
deformation radius is captured in most places pro-
viding a lower estimate on mesoscale buoyancy gra-
dients.

Thus, the estimation for the scaling (17) is

cpρw′T ′ =
cpρ

gαT
2Ce|f |EKE

H2

H2
t

. (20)

All remaining parameters in (20) are well known and
appear in Table 3. The region near the equator is
blocked out, because the Stammer (1998) dataset
and equation (20) are not valid there.

Symbol Name Value
g gravitational accel. 9.81 m s−2

cp specific heat 4180 J kg−1K−1

ρ typical density 1025 kg m−3

αT thermal exp. coeff. 2 · 10−4 K−1

Ce stirring eff. coeff. 0.06
|f | Coriolis parameter 1.45 · 10−4 s−1

×| sin(latitude)|

Table 3: Constants used for the flux estimation in (20).

The two panels of Fig. 7 show the estimated MLE
vertical flux from (20) for austral and boreal win-
tertime conditions. The most obvious features are
strong signals where the ML is deep. That is, the
North Atlantic and Pacific in boreal winter and the
Southern Ocean in austral winter. Some contribu-
tion stems from the distribution of the horizontal

buoyancy gradients as well (these regions also have
strong mesoscale activity). However, mesoscale ac-
tivity is relatively consistent year-round (Qiu, 1999;
Qiu and Chen, 2004), while the ML depths vary
strongly. The most active areas are those where ac-
tive convection is occuring. Where surface cooling
is large, such as mode water and deep water forma-
tion regions, the MLEs are predicted to restratify
the regions after convection. Because these regions
are crucial for communication between the atmo-
sphere and ocean, neglecting the MLE fluxes may
be a significant bias.

MLE fluxes are often comparable to the air-sea
fluxes: they are large where air-sea fluxes are large
(Fig. 7), and even where they are weaker in Fig. 7
the air-sea fluxes are comparably weaker. Compar-
ing to the Grist and Josey (2003) heat flux dataset,
the MLE heat flux estimate exceeds 50% of the cli-
matological monthly-mean heat flux more than 25%
of the time and exceeds 5% of the climatological
flux more than 50% of the time. Of course, the
MLE fluxes are overwhelmed during active convec-
tion events in times of extreme heat fluxes, but their
fluxes are comparable to the monthly mean fluxes
and will restratify after cooling events.

The restratification by frontogenesis (Oschlies,
2002; Lapeyre et al., 2006; Capet et al., 2006) may
be of similar magnitude to MLE restratification.
However, the simulation in FFH including mesoscale
eddies and submesoscale MLEs indicates that fron-
togenetic restratification will be added to rather
than instead of MLE restratification. The MLE pa-
rameterization applies even when mesoscale fronto-
genesis is resolved. A second restratification pro-
cess of recently studied is wind-driven restratifica-
tion (Thomas and Lee, 2005). The winds may drive
ageostrophic circulations of comparable magnitude
to MLE-induced overturning. However, depending
on the direction of the wind, these effects may be
destratifying or restratifying. The net effect of a
random wind field remains unclear. An added com-
plication is that wind-driven ageostrophic circula-
tions can tighten fronts and promote the develop-
ment of MLEs, hence coupling the two processes
(L. Thomas, personal communication). Ferrari and
Thomas (2007) find that MLEs are often at leading
order. Wind effects and mesoscale frontogenesis are
also important, but any future parameterizations of
these effects can be added to or used to improve
the MLE parameterization here. In sum, it seems
the effects of MLEs will be felt often throughout the
extratropical ML.
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Figure 7: Equivalent vertical heat flux due to submesoscale restratification of the ML inferred from satellite altimetry
(Stammer, 1998), the and the de Boyer Montégut et al. (2004) mixed layer depth climatology.
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4. Summary and Conclusion

This paper has demonstrated that the parameter-
ization proposed in Fox-Kemper et al. (2007a) is
effective at reproducing idealized submesoscale re-
solving simulations. The implied vertical heat fluxes
were estimated from observations and found to be a
leading order contribution to the mixed layer buoy-
ancy budget. Mixed layer eddies are effective at
restratifying the mixed layer throughout the world,
and will have an important effect where atmosphere-
ocean coupling is important. MLE restratification
is presently ignored in most ocean studies and in all
coarse resolution models.

The parameterization proposed by FFH takes the
form of an overturning streamfunction depending on
the horizontal buoyancy gradients, which is not true
of any other parameterizations commonly used for
ML processes. Thus, this parameterization will pro-
vide GCMs with a novel ML depth and buoyancy
sensitivity. The implementation of the parameteri-
zation here confirms that the overturning stream-
function captures the change in the buoyancy in
these simulations remarkably well, and that it is
readily and stably implemented with many differ-
ent advection schemes.

Simulations of the spindown of initial fronts by
eddies like this one, which is a situation relevant
in some ocean conditions, are far fewer than equili-
brated simulations, which are obviously appropriate
for the atmosphere where radiative cooling is criti-
cal (e.g., Held and Suarez, 1994). In fact, spindown
simulations are so uncommon that the authors were
suprised to find that a sensible parameterization
could be found. The tendency toward equal extrac-
tion of PE at all depths, as demonstrated by Fig. 6b,
is a purely finite-amplitude effect and is potentially
significant for all spindown problems, including spin-
down of large-scale ocean fronts by mesoscale eddies.
However, the complications of variable N2 and po-
tential vorticity in the mesoscale eddy problem are
nontrivial. Nonetheless, equal extraction would im-
ply a strong departure for spindown problems from
the exactly along-isopycnal fluxes deemed appropri-
ate for spindown by Gent and McWilliams (1990),
and is yet to be fully tested for problem of spindown
by mesoscale eddies.

The parameterization as tested here may be ap-
plied directly in mesoscale eddy-resolving models of
the extratropics. However, it must be adapted on
the equator (because of division by |f |) and can not
be included in coarse horizontal resolution ocean
models (because they will underestimate the rel-

evant ∇Hb). These remaining difficulties are ad-
dressed in Fox-Kemper et al. (2007b), where the ef-
fects of the parameterization are studied both in
a realistic eddy-resolving model of the Southern
Ocean and a 1◦ global coupled atmosphere-ocean
model.

Ensemble averages of the 3d simulations would
allow a closer critique of the flaws in the details
of the prognostic model, but since the parameter-
ization is intended to be used in coarser-resolution
models where such differences will be subgridscale,
this extra step seems unnecessary. To the extent
that the frontal spindown simulation is an adequate
prototype for the real MLEs in the ocean, the pa-
rameterization has remarkable skill. Additional ef-
fects to be considered in the future include the ef-
fect of winds and coupling with the mesoscale. Of
course, the ocean is not as simple as the idealized sit-
uation considered here, nonetheless the results here
are very encouraging and the approximate effects of
mixed layer eddies may now be explored with ease
in many models.
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A. 2d Prognostic Model Details

The prognostic models uses Ψ from (3) to advect
buoyancy, implemented with a staggered grid finite-
volume method identical to that used in the 3d
model (Marshall et al., 1997) where temperature
gridcells are surrounded by fluxes through the cell
faces in y and z. The solution method begins with
a b field discretized to cell centers, uses (3) to deter-
mine Ψ (located on cell corners), then differentiates
Ψ to generate eddy-induced velocities v∗, w∗ as in
(6), and the buoyancy is evolved as in (5). Different
buoyancy advection schemes are used to appropri-
ately form v′b′ and w′b′ from v∗, w∗ and b. First-
order upwind, Lax-Wendroff, 3rd-order upwind with
and without flux limiters, and explicit diffusivity
with second and fourth order centered schemes yield
similar results, with expected minor differences in
the degree of gridscale noise. No obvious numerical
instabilities occurred in any scheme. A third order
upwind, flux-limited scheme is used throughout, ex-
cept where specifically mentioned. Convective ad-
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justment is used to eliminate occasional unstable
stratification due to discretization errors and mis-
taken determinations of ML base location. Time-
stepping is done by an fifth-order Runge-Kutta
method with an embedded fourth-order method to
set time steps adaptively. The timesteps allowed at
< 0.1% accuracy were quite long (8hr), so the CFL
condition on the overturning should not be trouble-
some in implementation in a GCM.

The ML depth H is determined by the integral
constraint,

N2(H)−min(N2) =
Cm

H

∫ 0

−H

(N2(z′))dz′, (21)

Where here Cm = 8. The minimum ML value of
N2, min(N2), in the ML is a very small correction
to the l.h.s., but allows a larger (and thus more ro-
bust) value of Cm to be used than was used in FFH.
Nonetheless subtracting it from the local value of
N2 reduced the number of spurious ML depths that
occured when N2 happened to vary within the ML.

The residual fluxes are added in Section 2c. They
are determined by noting that the 3d horizontal flux
has a similar shape to the 2d horizontal skew flux in
Fig. 5b, so to a good approximation,

u′Hb′ ≈ CΨhs × ẑbz,

R ≈ (C − 1)Ψhs × ẑbz.

The latter allows direct estimation of the residual
flux.

Calculating the residual flux requires an addi-
tional step beyond the standard approach to advec-
tion taken here. Typically, the advection of buoy-
ancy is calculated as advective-form fluxes (v∗, w∗)b,
which are calculated as b(∇ × Ψ) with upwinding
and flux limiting for stability taken into account.
The following identity asserts that the divergence of
the advective fluxes ((v∗, w∗)b ≡

[
b(∇×Ψ)

]
) will

equal the divergence of the skew fluxes (Ψ×∇b),

0 = ∇ · (∇×Ψb),

≡ ∇ ·
[
b(∇×Ψ)

]
−∇ ·

[
Ψ×∇b

]
. (22)

The discretization assures that this identity holds to
machine precision. Since only divergences affect the
buoyancy budget, (5), this identity is sufficient to
ensure that the buoyancy evolution and numerical
stability is identical whether advective or skew fluxes
are used to transport buoyancy.

In (16), it was argued that the residual flux is
roughly proportional to the skew flux, which must
be determined. The model advects buoyancy with
the advective flux after upwinding for stability. The
skew flux can be calculated from the already up-
winded advective flux with,

∇×
(
Ψb
)

+ Ψ×∇b = b(∇×Ψ).

The residual flux is then just (C − 1)Ψ×∇b. The
residual flux gains some of the upwinding and flux-
limiting that are endowed on the horizontal skew
flux by upwinding the horizontal advective flux be-
fore transforming to the skew form. However, the
residual flux cannot be further upwinded or flux lim-
ited after this transformation. The horizontal skew
and residual fluxes are a product of a streamfunc-
tion (very smooth) times a buoyancy gradient (very
noisy) which is a much less stable arrangement than
a product of velocity (somewhat smooth) and buoy-
ancy (somewhat smooth). The only reason that a
discretization based on the skew flux is stable here
is the exact identity with the advective flux in (22)
that was stabilized by upwinding. Once the resid-
ual flux is added, the identity is broken, and the
skew plus residual does not correspond to an exact
advective form.

The test cases in Fig. 6c are stabilized with much
smaller time steps to allow the advection scheme’s
implicit diffusivity to exert stability. In a real-
istic ocean model, one could not afford smaller
timesteps, so horizontal diffusivity would have to
be increased to stabilize the residual flux, which
amounts to double-counting the diffusive effects of
MLEs! Fig. 6c shows that changing to a more dif-
fusive advection scheme (in that case a first-order
upwind scheme instead of a third order scheme)
produces the same magnitude of changes as adding
the residual flux, but very stably. Similarly, the
residual flux could be implemented as a spatially
and temporally variable nonlinear diffusivity as sug-
gested in FFH, but spatially-variable diffusivities
have their own numerical implementation difficul-
ties (e.g., Fox-Kemper and Pedlosky, 2004). In sum,
the difficulties in implementing the residual flux out-
weigh the modest benefit in this problem, but if one
insists on doing so using a first-order upwind advec-
tion scheme seems to be a practical approximation.

B. Determining Ht

The connection between the satellite altimetry and
horizontal buoyancy gradients requires an estimate
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of the vertical decay scale of the first baroclinic
mode, Ht. Following (Chelton et al., 1998), sepa-
ration of variables is applied to find vertical mode
solutions of the linearized quasigeostrophic potential
vorticity equation. The resulting eigenvalue prob-
lem for the vertical velocity, w = φ(z)W (x, y, t), is
of particular importance here,

d2φ(z)
dz2

= −N2(z)
c2
1

φ(z), (23)

φ = 0 at z = 0, (24)
φ = 0 at z = −D, (25)

where D is the ocean depth. The assumption of sep-
arability, w = φ(z)W (x, y, t) and incompressibility,
∂w
∂z = −∇ · uH , require that uH has the vertical
structure of ∂φ(z)

∂z . Thus, an estimate of Ht is,

1
H2

t

=

∣∣∣∂uH

∂z

∣∣∣2∣∣uH

∣∣2 =

∣∣∣d2φ
dz2

∣∣∣2∣∣∣dφ
dz

∣∣∣ . (26)

To the accuracy required here, the approximate
WKB solution provided by Chelton et al. (1998) suf-
fices,

φ(z) =

√
N(z)∫ 0

−D
N(z′)dz′

B sin

(∫ z

−D
N(z′)dz′∫ 0

−D
N(z′)dz′

)
. (27)

Plugging the expression (27) for φ(z) into (26) and
evaluating at z just below the ML depth gives a
sufficiently accurate approximation to Ht for these
purposes. The entire expression was evaluated glob-
ally using the Levitus climatology to produce a
global map of Ht. Simply using Ht = 1km every-
where yields comparable, although less accurate, es-
timates than those produced with Ht estimated by
this method.
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