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ABSTRACT

Ageostrophic baroclinic instabilities develop within the surface mixed layer of the ocean at horizontal fronts
and efficiently restratify the upper ocean. In this paper a parameterization for the restratification driven by finite-
amplitude baroclinic instabilities of the mixed layer is proposed in terms of an overturning streamfunction that tilts
isopycnals from the vertical to the horizontal. The streamfunction is proportional to the product of the horizontal
density gradient, the mixed layer depth squared, and the inertial period. Hence restratification proceeds faster at
strong fronts in deep mixed layers with a weak latitude dependence. In this paper the parameterization is theoretically
motivated, confirmed to perform well for a wide range of mixed layer depths, rotation rates, and vertical and
horizontal stratifications. It is shown to be superior to alternative extant parameterizations of baroclinic instability
for the problem of mixed layer restratification. Two companion papers discuss the numerical implementation and
the climate impacts of this parameterization.

1. Introduction

A typical oceanic stratification and shear allows
two types of baroclinic instability (Boccaletti et al.,
2007, hereafter BFF): deep mesoscale instabilities
spanning the entire depth and shallow submesoscale
instabilities trapped in the weakly-stratified surface
mixed layer (ML). The troposphere and its surface
boundary layer provide two analogous types of insta-
bility (Blumen, 1979; Nakamura, 1988). The shallow
ML instabilities are ageostrophic baroclinic instabil-
ities (Stone, 1966, 1970, 1972a; Molemaker et al.,
2005) and differ from the deep mesoscale instabili-
ties in their fast growth rates of O(1/day) and small
scales of O(1 km). BFF suggest that ML instabili-
ties play an important role in restratifying the upper
ocean after strong mixing events.

Presently ocean models use a variety of bound-
ary layer parameterizations to represent the pro-
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cesses that mix away stratification in response to
surface forcing (e.g., Kraus and Turner, 1967; Price,
1981; Price et al., 1986; Large et al., 1994; Thomas,
2005), while ML restratification occurs only by sur-
face heating. Dynamical restratification by slump-
ing of horizontal density gradients within the ML is
typically ignored. As a consequence, ocean models
have a bias towards weak near-surface stratification
(e.g., Oschlies, 2002; Hallberg, 2003; Chanut et al.,
2005). Large-scale ocean models are beginning to
resolve deep mesoscale eddies with O(10km) grids,
but resolving restratification by submesoscale insta-
bilities requires O(100m) grids. Submesoscale in-
stabilities are subgridscale even in ”eddy-resolving”
models.

In this paper scalings are developed for restrati-
fication by finite-amplitude ML instabilities, herein
referred to as mixed layer eddies (MLEs). These
scalings are tested in idealized simulations and for-
mulated into a parameterization. Two companion
papers provide more insight into the workings of the
parameterization. Fox-Kemper and Ferrari (2007,
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hereafter FF) compare the parameterization with
submesoscale-resolving simulations and estimate the
importance of MLE restratification from data. The
numerical implementation of the parameterization
and its effects in realistic global simulations are the
subject of a third paper (Fox-Kemper et al., 2007).

Tandon and Garrett (1994) first proposed that
dynamical restratification occurs at lateral density
fronts in the ML after strong mixing events. How-
ever they considered only restratification by Rossby
adjustment of lateral fronts (Rossby, 1937, 1938; Ou,
1984; Tandon and Garrett, 1995). Young (1994) and
Hallberg (2003) derive parameterizations for the re-
stratification by Rossby adjustment. However, BFF
show that most dynamical restratification occurs af-
ter the initial Rossby adjustment, when ML insta-
bilities reach finite amplitude and start releasing the
potential energy (PE) stored in the front.

The parameterization developed here represents
the restratification by ML instabilities. Following
Gent and McWilliams (1990) (henceforth GM), the
restratification is cast in terms of an eddy-induced
streamfunction that adiabatically overturns isopy-
cnals from the vertical to the horizontal. Scalings
are derived directly for the overturning streamfunc-
tion, in contrast to the traditional approach of using
mixing length arguments to relate fluxes to mean
gradients via an effective diffusivity. The proposed
scaling depends only on finite-amplitude properties
of MLEs that are confirmed by simulations.

There are many notable studies of baroclinic in-
stabilities in the ML. References for the linear anal-
ysis are given in BFF. This work is closer in spirit to
previous studies at finite amplitude (Samelson and
Chapman, 1995; Spall, 1997; Jones and Marshall,
1993, 1997; Haine and Marshall, 1998). However,
the focus here is a parameterization of ML restrati-
fication which does not appear elsewhere. It will be
shown that MLEs restratify importantly through an
upward buoyancy flux; capturing MLE horizontal
fluxes is less important. The strength of the ver-
tical fluxes is predicted by the parameterization as
a function of the lateral frontal buoyancy gradient
and the ML depth. The parameterization applies to
restratification by the submesoscale eddies observed
throughout the extratropics (Weller, 1991; Rudnick
and Ferrari, 1999; Hosegood et al., 2006). The pa-
rameterization also recovers the scaling laws found
by Jones and Marshall (1997) and Haine and Mar-
shall (1998) for eddy transport and restratification
during deep convection at high latitudes.

The paper is structured as follows. Section 2 gives
a relevant phenomenology of MLEs through study

of two idealized numerical simulations. Section 3
presents the theory behind the parameterization.
Section 4 validates the parameterization by diag-
nosis of the simulations. Concluding remarks and a
review of observational evidence of ML restratifica-
tion are presented in section 5.

2. Phenomenology of MLEs

Two numerical simulations are used to gain a sense
of the phenomenology of MLEs. The first contrasts
and connects mesoscale eddies and submesoscale
MLEs. The second focuses on MLE restratification
at a single front.

a. Simulation with both Mesoscale and Subme-
soscale Eddies

The first simulation is configured to produce deep
mesoscale eddies extending through the whole wa-
ter column and shallow submesoscale eddies trapped
in the surface ML. The MITgcm model (Marshall
et al., 1997) is configured to simulate a reentrant
channel where a baroclinically unstable jet is main-
tained by restoring temperature profiles along the
side walls (Fig. 1). The upper 75 m are initially un-
stratified, and are subsequently mixed by a diurnal
cycle of 200W/m2 cooling compensated by penetrat-
ing heating during the day. Nightly cooling thor-
oughly mixes the ML to roughly 50m depth. The
simulation is run at 8km resolution for 900 days,
interpolated to 2km resolution, and continued for
100 days. At this resolution, the largest MLEs1 are
permitted but only marginally resolved in order to
permit mesoscale features as well. Below, dedicated
simulations of MLEs alone allow better resolution of
submesoscale features. Details are in Appendix A.

A vigorous mesoscale eddy field develops through-
out the full water column (Fig. 1b), while variability
in the ML is dominated by small-scale meandering
fronts (Fig. 1a). The tightly packed isotherms result
from straining by the mesoscale eddies and frontoge-
netic processes compacting outcropping isotherms.
The meanders that develop along the fronts are
MLEs. The large mesoscale eddies result from baro-
clinic instability of the mean jet with growth rates
of O(1 month) and length scales near O(80 km).
The smaller MLEs result from ageostrophic baro-
clinic instabilities that develop along fronts within
the ML. Their scales begin near the linear insta-
bility scale based on ML depth and stratification,

1MLEs vary in size according to the strength of the front
upon which they grow, see (2).
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Figure 1: Contours of temperature at the a) surface and b) below the ML base in a simulation with both mesoscale
eddies and MLEs (0.2◦C contour intervals). Shading indicates w′b′ (upper panel) and |u′Hb′| (lower panel) at 20m
depth, the depth at which eddy fluxes are largest.

O(1 to 5 km), and enlarge as a result of an in-
verse cascade as discussed in BFF. MLEs cluster
along fronts, where frontal vertical shear endows the
fastest growth (Stone, 1966). Elsewhere the growth
rates are too slow to compete with the damping due
to turbulent mixing.

BFF argue that the ML instability linear growth
rates are only weakly affected by large scale strain-
ing, yet Spall (1997) shows that a large scale strain
can substantially alter finite-amplitude baroclinic
instability. This effect is notable in Fig. 1a near
(450, 80) km, where a powerful surface tempera-
ture front is pinched between three mesoscale eddies
(Fig. 1b). MLEs develop only after the front exits
the strain field near (400, 140) km. The strain rates
in this idealized simulation are larger than is typical
in the real ocean, yet MLEs are present throughout
the domain. Thus, while mesoscale straining can oc-
casionally suppress MLEs, the effect is confined to
the regions of largest convergence.

Basin-wide restratification can occur only by a
net upward transport of buoyancy. That is, on the
whole, the near-surface ML is made more buoy-
ant and the deeper ML becomes denser. The
vertical eddy buoyancy flux, w′b′, is shaded in

Fig. 1a. (Primes denote departures from along-
channel, x−direction averages. See Table 1). The
figure shows fluxes near the depth where they are
largest (20m). Two features emerge. First the
largest vertical fluxes are small-scale features clus-
tered near fronts. In fact, filtering w′ and b′ indi-
cates that 70%(50%) of the basin average, w′b′

xy
,

is generated by scales smaller than 12km (8km).
(Overbars denote along-channel averages, and su-
perscripts indicate additional averaging along other
coordinates, See table 1). Second, w′b′

xy
is posi-

tive rather than negative, implying a tendency to
restratify the ML. The shading in Fig. 1b indicates
regions where |u′Hb′| is largest. The horizontal fluxes
are coherent on scales associated with mesoscale ed-
dies, while the vertical fluxes are distinctly subme-
soscale. The mesoscale eddies and MLEs have com-
parable horizontal velocities, but mesoscale eddies
stir over longer distances and dominate the horizon-
tal fluxes. MLEs and fronts have larger Rossby num-
ber and thus larger vertical velocities, so they dom-
inate the vertical fluxes. In sum, mesoscale eddies
dominate the lateral fluxes while fronts and MLEs
dominate vertical fluxes and restratification.

The role of MLEs in restratification is clarified by
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comparing the simulation described above with an
otherwise identical simulation run without a diurnal
cycle from day 900 to day 1000. When the resolution
is increased at day 900, near-surface restratification
increases as a result of sharper fronts from mesoscale
straining (Spall, 1997; Nurser and Zhang, 2000; Os-
chlies, 2002; Lapeyre et al., 2006). But, do MLEs
and their associated fronts lead to even more restrat-
ification as suggested by BFF? With and without a
continued diurnal cycle, the mesoscale eddies differ
little and fronts of a similar strength develop at the
surface–the averaged surface |∇Hb|2 differs by less
than 25%. But without a diurnal cycle the ML dis-
appears through unchallenged restratification, and
soon MLEs are stabilized. The average flux, w′b′

xy
,

in the upper 40m is half (a third) that of the simu-
lation with a continued diurnal cycle in ten (forty)
days.

Some recent investigations without active remix-
ing of the ML underestimate the restratification ef-
fect of MLEs (e.g., Mahadevan, 2006; Mahadevan
and Tandon, 2006), as MLEs do not occur after the
ML has already restratified by other mechanisms.
Other studies have found few or no MLEs because
the ML in the regions considered were very shallow,
so very high horizontal resolution would be required
to resolve the instabilities (e.g., Capet et al., 2006;
Lapeyre et al., 2006). Of course, these simulations
are not without near-surface restratification: fron-
togenesis, winds, and solar heating may all restrat-
ify. Ferrari and Thomas (2007) compare the relative
contributions from these mechanisms quantitatively
and conclude that MLEs play an important role in
near surface restratification. MLE restratification is
the subject of this paper.

b. Restratification by Spindown of a ML Front

Frontal instabilities–MLEs–develop once the subme-
soscales are permitted (Fig. 1). However the compu-
tational expense of refining grid resolution to con-
vergence for MLEs while retaining properly sized
mesoscale eddies is onerous. Hence, the MLE re-
stratification study continues by focusing on the
spindown of a single ML front representing the af-
termath of a mesoscale straining event as in Fig. 1
or the edge of a recent vertical mixing event (Price,
1981; Haine and Marshall, 1998). The front is ini-
tialized as a horizontal density gradient in a flat-
bottom reentrant channel. Vertical stratification is
uniform in the interior and weak in a surface ML. A
typical model configuration is shown in Fig. 2a and
detailed in Appendix B. The initial velocity may be

either resting (hereafter ”unbalanced”) or in thermal
wind balance (”balanced”). Many other parameters
vary across the simulations, and resolution is var-
ied to ensure the baroclinic instability is resolved;
tripling the resolution does not significantly change
the results.

An unbalanced ML front first slumps gravitation-
ally and oscillates inertially about the Rossby ad-
justed state (Tandon and Garrett, 1995). Soon af-
terward, ML instabilities are detectable. Within
a few days they are evident as wavelike distur-
bances along the oscillating front (Fig. 2a) that en-
large in time (Figs. 2b-c). Five days are required
to reach finite amplitude because the initial per-
turbations away from uniform flow in the along-
channel direction are artificially small. In test simu-
lations, and presumably also the ocean, larger initial
perturbations develop into finite amplitude MLEs
within one day. Balanced simulations do not un-
dergo Rossby adjustment, but the development and
nonlinear growth of ML instabilities is very simi-
lar. In all cases the initial PE is the primary energy
source, and the MLEs grow by slumping the front
to extract this energy (BFF).

MLE restratification increases the balanced
Richardson number,

Ri ≡ N2

∣∣∣∣∂ūg

∂z

∣∣∣∣−2

=
N2f2

M4
,

where N2 and M2 are volume-average values of bz

and by over the frontal region in the ML. The bal-
anced Ri differs from the traditional Ri in that geo-
strophic shear replaces the full shear.

Fig. 3 shows the increase in Ri in four simulations.
Two of the simulations have no initial velocity. The
other two begin in thermal wind balance. In each
pair, N2 at t = 0 is set to either M4/f2 or 0.2

The unbalanced simulations oscillate inertially near
Ri ≈ 1 for about 5 days, while the balanced simula-
tion with N2 = 0 develops symmetric instabilities in
a few hours that then increase Ri to one. This early
restratification is overwhelmed once MLEs are ac-
tive (after day 5), and the MLE restratification rate
(∂N2

∂t ) is the same once finite amplitude is reached.
Only the time to reach finite amplitude differs: the
larger Ri simulations reach finite amplitude later (as
the linear growth rate (3) below predicts).3 In sum-

2The initial Richardson number is Ri0 = 1 or Ri0 = 0,
respectively. See Table 1 for notation.

3Symmetric instabilities are strengthened in a tripled res-
olution version of the balanced, Ri0 = 0 case. At higher
resolution, Ri = 1 is reached a day earlier, but the average
restratification rate after Ri > 2 differs by less than 3%.
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a) d)

b) e)

c) f)

Figure 2: Temperature (oC) during two typical simulations of a ML front spinning down: a-c) no diurnal cycle, d-f)
with diurnal cycle and convective adjustment. (Black contour interval=0.01oC, white contour interval=0.1oC.)

mary, there are a variety of instabilities that rapidly
bring the front to Ri ≈ 1, but the subsequent MLE
restratification is insensitive to the details of these

processes.

Ageostrophic baroclinic instabilities, which ex-
tract PE by slumping isopycnals, are the dominant
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Figure 3: Balanced Richardson number for four simu-
lations starting from a thermal wind ”balanced” initial
condition or resting initial velocity, i.e.,”unbalanced”.
All parameters are identical across simulations and at
front center, but initial N2 may be M4

f /f2 (labeled here
as Ri0 = 1) or 0 (Ri0 = 0). N2 is b̄z averaged over the
center of the front (|y − y0| < Lf/4), and M4

f is the
largest value of b̄2

y in the initial condition (Appendix B).

form of ML instabilities at Ri ≥ 1 (BFF, Haine
and Marshall, 1998). Their main characteristics are
captured by Stone (1970) in his analysis of the Eady
(1949) problem. The linear growth rate is

τs(k) =
kU

2
√

3

[
1− 2k2U2

15f2
(1 + Ri)

]
, (1)

and the fastest growing mode has

Ls =
2π

ks
=

2πU

|f |

√
1 + Ri
5/2

, (2)

τs(ks) =

√
54
5

√
1 + Ri
|f |

. (3)

For the simulations shown in Fig. 2, Ls = 3.9 km
and τs(ks) = 16.8hr for Ri = 1. MLEs appear near
these scales in both the frontal spindown simulations
(Fig. 2) and the mesoscale plus submesoscale simu-
lation (Fig. 1a)–these values are much smaller and
faster than those of mesoscale eddies.

The scales from linear theory are helpful in deter-
mining the numerical resolution necessary to permit
MLEs, but they are not useful for parameterizing
the frontal slumping effect of MLEs. Fig. 4 com-
pares the power density spectrum of eddy kinetic
energy (EKE) at various times from a nonlinear sim-
ulation and the linear theory prediction. Linear the-
ory tracks the nonlinear spectrum only for the first
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Figure 4: Perturbation power spectral density, E(κ)
for a simulation from Fig. 3 (solid). Spectra are plot-
ted at two day intervals from day 1.5 to day 29.5. The
linear prediction of the spectrum (Es(κ), dashed) is set
equal to the nonlinear spectrum on day 1.5, and then
evolved at each along-channel wavenumber as predicted
by linear theory taking into account the changes in Ri
and U . That is, Es(κ) is evolved using τs(k) from (1)
based on the instantaneous Ri and U from the nonlinear
simulation: Es(κ) = e2t/τs(k)

R
E|t=1.5(k, l)dl. The de-

crease in growth rate with cross-channel wavenumber, l,
is ignored for simplicity and because low l modes soon
dominate.

six days. During this period the spectral peak tracks
the most unstable wavenumber predicted by (2) and
shifts to larger scales because Ri grows as the strat-
ification increases (Fig. 3). However the nonlinear
spectrum departs the linear prediction as the insta-
bilities reach finite amplitude. EKE is transferred to
scales larger than the most unstable mode through
a vigorous inverse cascade (Fig. 4).

The inverse cascade complicates the parameteri-
zation problem. Eddy mixing length arguments are
routinely used to study baroclinic eddy fluxes (Haine
and Marshall, 1998; Spall, 2000; Larichev and Held,
1995; Schneider and Walker, 2006). In these argu-
ments the lateral transport of tracers is dominated
by the largest energy-containing eddies (e.g., How-
ells, 1960). The eddy saturation strength follows a
simple scaling: the eddy velocity within the front
saturates at the initial mean flow velocity as shown
in Fig. 5 (Stone, 1972b). The mixing length, how-
ever, is not fixed in time in spindown problems such
as this one, nor is it readily estimated from other
horizontal scales: the most energetic eddies enlarge
beyond the most unstable scale (e.g., Cehelsky and
Tung, 1991) and beyond the initial frontal width
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Figure 5: Kinetic energies and cross-channel pertur-
bation velocity variance as a function of time from the
same simulation as Fig. 3 (solid) and Fig. 4. The slight
increase in the basin-average EKE after day 15 is sim-
ply a result of the enlarging eddy scale widening the
area of eddy activity into previously motionless fluid (see
Fig. 4). That is, the basin-average of perturbation KE
continues to grow (dashed line) while the average over
only the center of front saturates (solid line).

(Fig. 2c).
Another popular approach for parameterizing

baroclinic spindown relies on linear stability the-
ory of the basic state (e.g., Stone, 1972b; Killworth,
2005). The core assumptions are that eddies and
mean state satisfy the same scaling and that finite-
amplitude eddies resemble the fastest-growing lin-
ear instability. In the MLE problem, not only are
longer lengthscales energized by the inverse cascade,
but frontogenesis leads to smaller lengthscales as
well. The mean state is well described by quasi-
geostrophic (QG) scaling–perhaps modified to al-
low variable background stratification (e.g., Naka-
mura and Held, 1989), but the MLE Richardson and
Rossby numbers approach one as a result of fronto-
genesis at the boundaries. This spontaneous loss of
balance is a distinguishing feature of fronts that out-
crop at the ocean surface (Molemaker et al., 2005).

Nakamura and Held (1989) and Nakamura (1994)
argue that the nonlinear, frontogenetic development
of MLEs can be captured by stability analysis in geo-
strophic coordinates (Hoskins, 1976). This approach
correctly predicts frontal development of Richard-
son and Rossby numbers of O(1). However, this
approach also predicts that the ageostrophic shear
generated through frontogenesis grows as large as
the geostrophic shear and arrests further restratifi-

0 5 10 15
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1

time (days)

!
/H

Figure 6: Typical vertical excursion scale, ζ ≡p
b′2/N2, scaled by ML depth, H, for initially bal-

anced simulations where the initial ML depth was 200m
(solid), balanced simulations where the ML depth was
50m (dashed), and unbalanced simulations where the
initial ML depth was 200m (dotted). Other parameters
vary as well: Lf/Ls varies by a factor of four and initial
N is 0 or 4f . The value of ζ/H shown is the maximum
in z, horizontally-averaged over the front center.

cation, as verified in 2d simulations by Nakamura
(1994). In three dimensions restratification contin-
ues despite the appearance of fronts (Fig. 2); the
MLEs twist and fold the front and prevent the fron-
togenetic two-dimensional saturation (as in Spall,
1997).

Traditional approaches therefore provide little
guidance in developing a parameterization of frontal
slumping and spindown by MLEs. There are how-
ever aspects of the nonlinear frontal spindown that
can be used to develop a parameterization. First,
the initially vertical isopycnals slump from the ver-
tical to the horizontal without spreading much, i.e.,
M2 decreases only 10 to 20% while N2 increases by
orders of magnitude. Second, the inverse cascade
proceeds to ever increasing scales in the horizontal,
but it is arrested by the ML depth in the vertical.
The typical vertical excursion scale is a fixed propor-
tion of the ML depth across different simulations
(Fig. 6). Third, the MLEs release PE by fluxing
buoyancy along a surface at a shallower slope than
the mean isopycnal surface (i.e.,the flux direction
is more horizontal than the isopycnals), a charac-
teristic of linear and nonlinear baroclinic instability
(Fig. 7). The ratio of the slopes is fixed near two, the
value yielding the maximum extraction of PE (Eady,
1949; Haine and Marshall, 1998). Fourth, the rms
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Figure 7: Ratio of the horizontal to vertical eddy fluxes
scaled by isopycnal slope for the same simulations as in
Fig. 6. The z-level shown is the ML midpoint, and all
quantities are averaged over the center of the front.

eddy velocities in the middle of the front saturate at
a value that scales with the initial mean geostrophic
shear (Fig. 5). These four elements constitute the
basic ingredients of the parameterization.

3. Theory for the Parameterization

A parameterization of ML restratification is to be
derived based on the phenomenology of MLEs. A
schematic of the slumping process of a ML front is
shown in Fig. 8. The vertical eddy buoyancy fluxes
are everywhere positive, and the horizontal cross-
channel eddy fluxes are everywhere down the mean
horizontal gradient. The fluxes are along a shallower
slope than the mean isopycnal slope to slump the
front and reduce the mean PE.

The ML restratification problem shares many as-
pects with the mesoscale restratification considered
by Gent and McWilliams (1990, hereafter GM) and
Gent et al. (1995). First, restratification proceeds
through baroclinic instabilities and releases mean
PE. Second, isopycnal slumping is largely adia-
batic and can be represented through advection by
an eddy-driven overturning streamfunction. Third,
momentum fluxes are weak compared to Coriolis
forces, hence only buoyancy fluxes need to be pa-
rameterized. Despite these similarities, the GM pa-
rameterization is not optimal for MLE restratifica-
tion for two reasons. The MLE vertical structure is
dictated by the ML depth (Fig. 6); there is no such
constraint in the ocean interior or GM. Second, the
ML is frequently remixed, so M2 is nearly depth-

Figure 8: Schematic of the ML restratification.
Thin contours denote along-channel mean isopycnals.
Straight arrows denote direction of the eddy buoy-
ancy fluxes, and circular contours/arrows indicate eddy-
induced streamfunction contours and direction. The
decorrelation lengths of the eddies ∆y and ∆z are in-
dicated. The reader is reminded that after Rossby ad-
justment the isopycnals are already flattened to slopes
of O(10m per km) despite their near vertical appearance
in this figure.

independent. The Rossby adjustment or symmetric
instabilities that follow remixing provide a nearly
depth-independent N2 from the depth-independent
M2. Hence, MLIs develop with nearly uniform back-
ground M2 and N2, which simplifies the parameter-
ization.

It is an open question whether parameterization
of mesoscale restratification should be cast in terms
of PV4 or PE budgets. During MLE restratification
the horizontally-averaged PV outside of frictional
layers is nearly uniform in the vertical. Thus,

PE ≡ −zb
xyz ∝ H2bz

xyz ≈ H2PV
xyz

/f,

and the two approaches are equivalent. Lapeyre
et al. (2006) note that frontogenesis can intensify
PV near the surface without affecting PE. While
this effect appears significant for mesoscale eddies,
it is secondary for MLEs. We can therefore develop
the parameterization using the along-channel mean
buoyancy budget and the volume average PE budget
(over a large volume containing the frontal slumping
so that boundary terms vanish),

∂b̄

∂t
+ ∇ · ub̄ +∇ · u′b′ = D̄, (4)

dPE
dt

≡ − d

dt
zb

xyz
= −wb

xyz
. (5)

4Ertel potential vorticity, or PV, is (f + ∇ × u) · ∇b,
but when averaged over the meandering front it is well-
approximated by f b̄z .
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Overlines denote averaging (Table 1).

a. Magnitude of the Potential Energy Release

A simple scaling for the magnitude of the verti-
cal and horizontal eddy buoyancy fluxes begins by
considering the PE extraction by exchange of fluid
parcels over a decorrelation distance (∆y, ∆z) in a
time ∆t, as sketched in Fig. 8,

∆PE
∆t

∝
−∆z

(
∆yM2 + ∆zN2

)
∆t

. (6)

We may estimate the extraction rate by assuming:

1. The relevant timescale ∆t is advective: the time
it takes for an eddy to traverse the decorrelation
length with typical eddy velocities, V:

∆t ∝ ∆y/V. (7)

2. The horizontal eddy velocity, V, scales as the
mean thermal wind, U (see Fig. 5):

V ∝ U =
M2H

f
. (8)

3. The vertical decorrelation length scales with the
ML depth (see Fig. 6):

∆z ∝ H. (9)

4. Fluid exchange occurs along a shallower slope
(i.e., PE extracting) and proportional to the
mean isopycnal slope (see Fig. 7):

∆z

∆y
=

1
C

M2

N2
, C > 1. (10)

Thus,

∆PE
∆t

∝ −C − 1
C

M4H2

|f |
. (11)

Taking the absolute value of f ensures that PE is
extracted in southern and northern hemispheres.

The MLE vertical flux dominates the mean, so

wb
xyz ≈ w′b′

xyz ∝ C − 1
C

M4H2

|f |
. (12)

Assumption 4 implies

v′b′
xyz

= −C
w′b′

xyz
N2

M2
,

∝ −
[
(C − 1)

N2H2

|f |

]
M2. (13)

To conclude, (12) and (13) are consistent with Fig. 8:
w′b′ is upward and v′b′ is down the mean buoyancy
gradient, M2.

b. Magnitude of the Overturning Streamfunction

One might base a parameterization of w′b′ and v′b′

directly on the scalings (12) and (13), but introduc-
tion of an overturning streamfunction aids numerical
implementation.

The eddy buoyancy fluxes may be decomposed
into a skew flux generated by a streamfunction
(v′sb′ ≡ −Ψb̄z, w′

sb
′ ≡ Ψb̄y) and the remaining resid-

ual flux,

∇ · u′b′ = − ∂

∂y

(
Ψb̄z

)
+

∂

∂z

(
Ψb̄y

)
(14)

+
∂(v′b′ − v′sb

′)
∂y

+
∂(w′b′ − w′

sb
′)

∂z
,

In an adiabatic statistically-steady setting the resid-
ual flux would vanish, so all fluxes would be skew
with a unique streamfunction. In spindown prob-
lems, the residual flux does not vanish–the fluxes
are more horizontal than the isopycnals–primarily
due to time dependence. Thus a choice of stream-
function remains, and this choice should be gov-
erned by the ease of parameterization of the residual
flux (Plumb and Ferrari, 2005). Traditionally, the
streamfunction is chosen to eliminate the horizontal
residual flux (Andrews and McIntyre, 1978),

Ψtr ≡ −v′b′

b̄z
, (15)

∇ · u′b′ = − ∂

∂y

(
Ψtrb̄z

)
+

∂

∂z

(
Ψtrb̄y

)
(16)

+
∂(w′b′ + v′b′b̄y/b̄z)

∂z
.

The residual flux here is the vertical cross-isopycnal
flux. It is O(Ro) compared to the skew flux, and
thus it can be neglected in the ocean interior where
Ro � 1 and (15) is useful. In the ML setting, the
vertical fluxes are leading order. Producing w′b′ in
(12) would require a delicate balance of the decom-
posed fluxes implied in (15) and (16) to stably pro-
duce the upgradient vertical flux and have it vanish
at the surface: a daunting numerical task. The Held
and Schneider (1999) streamfunction, Ψhs, is more
convenient,

Ψhs ≡ w′b′

b̄y
, (17)

∇ · u′b′ = − ∂

∂y

(
Ψhsb̄z

)
+

∂

∂z

(
Ψhsb̄y

)
(18)

+
∂(v′b′ − v′sb

′)
∂y

.
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With this definition, Ψhs is readily given by w′b′

in (12) and vanishes naturally at the ocean surface.
Furthermore, the horizontal residual flux is an easily
parameterized downgradient flux, as C > 1.

Care must be taken if the scaling (12) for w′b′
xyz

is to be used to estimate Ψhs in the definition (17).
The scaling (12) applies to the large scale yz-average
of w′b′ while (17) requires local values in y and z of
w′b′ and b̄y. The simulations suggest that smooth-
ing horizontally over an MLE lengthscale–or equiva-
lently the resolution of any model where the param-
eterization will be used–is sufficient to quell these
subtle distinctions (see FF). Thus, a local relation-
ship in y is presumed,

Ψ
z ∝ (C−1)H2by

xz

C|f | . (19)

The vertical structure of the parameterization is not
local and is presented next.

c. Vertical Structure of the Overturning Stream-
function

In linear theory, the lengthscale at which the ver-
tical velocity and the buoyancy perturbations are
correlated specifies the vertical structure of w′b′.
Fig. 9 shows the dominant lengthscales contribut-
ing to the correlations between w′, v′, and b′. While
the correlations and autocorrelations of v′ and b′ are
dominated by features larger than the most unsta-
ble lengthscale, the typical horizontal scale at which
w′ and b′ correlate remains close to Ls. The differ-
ence in correlation scales is consistent with a vertical
mode saturation and an horizontal mode inverse cas-
cade. Thus, the vertical structure of w′b′ from linear
theory persists at finite amplitude (per Branscome,
1983a,b).

A vertical structure function, µ(z), is taken from
the w′b′ of linear theory and implemented as

Ψ =
CeH

2by
xz

µ(z)
|f |

. (20)

Fig. 10 shows how little µ(z) changes as finite am-
plitude is attained. Normalization of µ(z) to peak
at one collects all remaining constants into an effi-
ciency factor Ce.

An accurate approximation of µ(z) is given by a
simple extension of the analysis described in Stone
(1972a). The vertical fluxes due to ageostrophic
baroclinic instabilites are obtained by expanding the
linear solutions to O(k2U2/f2). The expression for
w′b′ is evaluated at the k of the fastest growing mode
as suggested by the numerical simulations (Fig. 9).
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Figure 9: The horizontal lengthscales typical of the
correlations v′b′, w′b′, and EKE for the same simula-
tion as in Fig. 4 are compared to the most unstable
lengthscale. Lengthscales from the v′ and b′ cospec-
trum, the w′ and b′ cospectrum, and the EKE spec-
trum, E(k), are shown rescaled by the time-evolving
Ls. L2 =

R
<(S(k))dk/

R
k2<(S(k))dk for a cospec-

trum S(k), and the
R
<(S(k))dk is the full correlation.

For more detail on cospectra see Emery and Thomson
(2001).

Taking the large Ri limit, a µ(z) appropriate soon
after MLEs begin strong restratification is found:

µ(z) =
[
1−

(
2z
H + 1

)2
] [

1 + 5
21

(
2z
H + 1

)2
]
. (21)

Below the ML base, µ(z) is set to zero. By differen-
tiating the buoyancy budget (4) in z and averaging
in the horizontal over a region large enough that the
fluxes vanish on the boundaries, one finds that the
dominant balance observed in the simulations:

∂bz
xy

∂t
≈ −by

x ∂2Ψ
∂z2

y

,

≈ −Ce

H2
∣∣∣by

xz
∣∣∣2

|f |

y

∂2µ(z)
∂z2

. (22)

All of the factors on the right are depth-independent
except ∂2µ(z)

∂z2 . Hence, µ(z) controls the relative rate
of restratification at different depths.

Equations (21) and (22) suggest that restratifica-
tion near the surface and base of the ML is nearly 3
times faster than in the center, consistent with nu-
merical simulations (see FF). A long-wave approxi-
mation to µ(z) is easily obtained by neglecting the
second factor in brackets in (21), as shown by Stone
(1972a). This quadratic form is inappropriate for
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Figure 10: Daily snapshots of Ψhs from a typical simu-
lation without a diurnal cycle. The streamfunctions are
rescaled to have maximum of unity for comparison to
µ(z) in (21), and they are shifted by 1 each day (dotted
lines show the origins, ML depth ≈ 200m).

the ML frontal spindown, because it produces uni-
form restratification at all depths contrary to the
result of the simulations.

d. Comparison with other theories

Comparison with other parameterizations is useful
to clarify the implications of (20). In particular,
most eddy parameterizations assume a steady state
with constant N2. During ML restratification by
frontal spindown both the stratification and eddy
lengthscale change dramatically: this time depen-
dence must be predicted by the parameterization
rather than ignored.

Stone (1972b) uses linear instability analysis to
compute the correlations v′b′ and w′b′ for small am-
plitude linear waves, and then sets the eddy velocity
amplitude to be proportional to the mean flow ve-
locity, U , as is done here. From Stone’s equations
2.22-2.23,

v′b′ = −1.3
[

N2H2

f

√
1+Ri
Ri

]
M2, (23)

w′b′ = 0.09H2M4

f

[
1−

(
2z
H + 1

)2
]

1√
1+Ri

. (24)

These fluxes differ from the ones proposed here, (12)
and (13), by a dependence on Ri that originates from
the linear theory correlations. The difference can
be traced to the linearized perturbation buoyancy
budget,

b′ ∼ (M2v′ + N2w′)τs(k), (25)

where τs is given by the linear growth timescale
(3), or just τs ∼

√
Ri/f for large Ri. In turbu-

lent flows, such as in Fig. 2, b′ decorrelates on the
much longer advective timescale τa ∼ Ri/f , hence
the

√
Ri discrepancy of Stone’s formulae with the

simulation results. Eddy-damped Markovian the-
ory nicely demonstrates the transition from fluxes
governed by linear timescales to fluxes governed
by advective timescales as the instabilities reach fi-
nite amplitude (e.g., Holloway and Kristmannsson,
1984; Salmon, 1998). A symptom of the failure of
(25) is that it predicts a vertical excursion scale of
ζ =

√
b′2/N2 ∝ Hτa/τs, while the simulations in

Fig. 6 demonstrate ζ ∝ H.
Haine and Marshall (1998) use a mixing length

argument to advocate v′b′ ∝ −LfUM2, and as
advocated here emphasize an advective timescale:
the timescale to transfer buoyancy across the baro-
clinic zone, Lf/U . However, they presume the zone
width, Lf , holds fixed during restratification. In
the ML, the vertical lengthscale and vertical fluxes
are more constrained than the horizontal, leading
to ∆y ∼ N2H/M2. Indeed, the snapshots in Haine
and Marshall (1998) reveal eddies that enlarge be-
yond the initial baroclinic zone. They analyze flux
scalings at only one time per simulation, τmodel,
when ’lateral transfer by eddies has become signifi-
cant’, which occurs naturally when ∆y ∼ Lf . Their
forcing provides Lf = |N2H/M2| initially, so

v′b′ ∝ −LfUM2 ∝ −N2H2

f
M2. (26)

This expression agrees with (13). However, the work
here uses ∆y instead of Lf , which extends the evo-
lution of v′b′ and w′b′ beyond τmodel and applies to
situations where Lf is not equal to |N2H/M2| ini-
tially (e.g., Fig. 3).

Green (1970) proposes a scaling based on equat-
ing the total difference in PE between an initial
baroclinic zone and an hypothetical one with the
minimum PE accessible by adiabatic rearrangement.
The PE released is equated to EKE to yield an eddy
velocity scale and–with b′ scaling as the buoyancy
difference across the zone–a scale for v′b′. Green
assumes constant N2, but by adapting Green’s ap-
proach to allow for large changes in N2 yields,

∆PE ∝ HM2Lf , (27)

v′b′ ∝ −M3L
3/2
f H1/2 (28)

∝ −M2N2H2

|f |
1

Ro3/2Ri1/2
. (29)
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Where Ro = U/(fLf ). Once the eddy lengthscale
exceeds the front width, one may replace Lf with
N2H/M2 (or equivalently Ro with Ri−1), and then
(29) becomes,

v′b′ ∝ −N2H2
√

Ri
f

M2. (30)

Different arguments lead Visbeck et al. (1997) and
Larichev and Held (1995) to the same expression.
While the amount of PE extracted in (27) is the
same as proposed in Section 3a, the results for v′b′

differ by
√

Ri. The extraction of mean PE is close to
EKE+EPE, but Green assumes that EKE+EPE ∝
EKE. Yet, from the numerical simulations (Figs. 5
and 6),

EKE
EPE

∝ M4H2

f2N2H2
∝ Ri−1.

As Ri increases, the mean PE extracted goes in-
creasingly to EPE, while EKE saturates near the
initial mean KE. The work here avoids this prob-
lem by using the PE budget, (5), to directly relate
PE extracted to w′b′

xyz
.

Some eddy parameterizations (e.g., Canuto and
Dubovikov, 2005; Eden, 2006) suppose that the
decorrelation length is approximately the linear in-
stability lengthscale for a mixing length theory. Us-
ing the linear lengthscale in (2) yields,

v′b′ ∝ −LsUM2 ∝ −
[
N2H2

|f |

√
1 + Ri
Ri

]
M2. (31)

Except for an unspecified efficiency factor, this ex-
pression is Stone’s (23). This approach fails because
the linear instability lengthscale during frontal spin-
down is smaller than ∆y ∝ N2HM−2 by Ls/∆y ∝√

1 + Ri/Ri.
In summary, the scaling here differs from others

in approach and by nondimensional factors. The
parameterization is tested against these alternatives
in Section 4.

e. Residual Diffusive Fluxes

The skew flux generates restratification because it is
part of the overturning circulation, but the residual
flux,

R = v′b′ + Ψb̄z = v′b′ + w′b′
b̄z

b̄y
, (32)

merely widens the front slightly (FF). In the linear
Eady model, v′b′, b̄z, and b̄y are depth-independent

while w′b′ depends on µ(z), so the relationship be-
tween residual flux and v′b′ is depth dependent. In
these simulations v′b′ and b̄z change as the flow re-
stratifies until R ≈ v′b′/2. Perhaps not coinciden-
tally, parcel exchange theory indicates that if R is
v′b′/2 at all depths then potential energy extraction
is maximized. Using the scalings for v′b′ and w′b′

in (13) and (12), R can be parameterized with a
nonlinear horizontal diffusivity scaling as

v′b′ + Ψb̄z = −κH b̄y, (33)

κH =
Cebz

xz
H2µ(z)
|f |

. (34)

Given the value of Ce ≈ 0.06 as determined in Sec-
tion 4 and typical ML stratifications, κH is only
O(1 − 100m2/s). This small value confirms that
MLE horizontal fluxes–residual or not–are smaller
than mesoscale horizontal fluxes. FF show that in
a forward simulation of parameterized frontal spin-
down, adding the residual flux widens the front,
but minutely–comparably to changing the buoyancy
advection scheme. They also show that including
residual fluxes makes the model less stable numeri-
cally. In sum, adding the residual fluxes is possible,
but the costs outweigh the benefit.

While w′b′ is upward in the ML, it is downward
below the ML base, as the reversal of the sign of
Ψ just below the ML base in Fig. 10 shows. This
tendency is easily understood: v′ and w′ are con-
tinuous, so fluxes roughly along isopycnals in the
ML overshoot as the mean isopycnal slope flattens
suddenly at the ML base. Below the ML base the
vertical buoyancy flux is downward and thus down
the mean vertical buoyancy gradient; a vertical di-
apycnal diffusivity κv of O(10−4m2/s) acting on
the mean buoyancy gradient could parameterize this
flux. This magnitude was estimated by diagnos-
ing w′b′/b̄z for the simulations run using the typ-
ical MLE parameter values in Table 2, but κv varies
strongly with MLE strength. FF show that using
κv = 3 ·10−5m2/s in a forward model of the param-
eterization slightly improves agreement with a com-
parable submesoscale-resolving simulation. Turbu-
lent mixing parameterizations may already contain
penetrating turbulent fluxes of this magnitude (e.g.,
Large et al., 1994). The additional diffusivity might
be important where ML entrainment is critical, but
a full study of this secondary effect of MLEs is be-
yond the scope of the present work.



8 October 2007 FOX-KEMPER, FERRARI, and HALLBERG 13

a) b)

c) d)

e) f)

Figure 11: Temperature (oC) during one diurnal cycle using convective adjustment. Panels d-e) are afternoon
values. (Black contour interval=0.01oC, white contour interval=0.1oC.)

f. MLEs under Additional Mixing: Diurnal Cycle

The preceding discussion has paid little attention
to the mechanisms that cause the ML to be mixed

in the first place: turbulent vertical mixing. Some
Rossby adjustment simulations were inundated with
a diurnal heat flux cycle for a more realistic ML en-
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Figure 12: As in Fig. 7, but for a simulation with a
diurnal cycle. The afternoon values, when the surface is
not being actively cooled, are shown as diamonds.

vironment. An example is shown in Fig. 11 and
Fig. 2d-f. With a diurnal cycle, the initial instabil-
ity wavelength is slightly smaller during the linear
growth stage (see BFF), but later the MLEs and
their nonlinear saturation are remarkably similar to
those in Figs. 2, 4, and 5.

Considering ”afternoon” snapshots suffices to iso-
late the effects of MLEs; during the night convec-
tion blurs the MLE signal. Fig. 12 shows that the
afternoon MLE fluxes are along a slope shallower
than the isopycnal slope just as without a diurnal
cycle. This effect is apparent once the MLEs are
sufficiently strong to overcome the noise of the di-
urnal cycle (after about day 10). The next section
shows that the Ψ scaling (20) holds nearly as well
as in the no diurnal mixing case.

The diurnal cycle causes a notable change to the
vertical structure of the fluxes. Fig. 13 shows that
the streamfunction does not vanish at the surface,
but at some level below. This is because the ML
is capped by large N2 during solar heating (Figs. 2
and 11). The streamfunction structure µ(z) may
be trivially altered by translating and rescaling the
vertical coordinate in µ(z) so that it vanishes at a
depth just below the surface rather than the surface.
This shortcut approximates the result from linear
instability analysis for a ML with surface-intensified
N2.

In conclusion, the scaling for Ψ in (20) holds in
the presence of spatially-uniform intermittent mix-
ing due to a strong diurnal cycle, as MLEs are rel-
atively unaffected. Haine and Marshall (1998) find
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Figure 13: Daily snapshots of afternoon Ψhs from a
typical simulation with a diurnal cycle. Compare to
Fig. 10.

the same scaling with a constant 400W/m2 cooling
of the surface to represent strong wintertime cool-
ing, so even larger fluxes without daytime restratifi-
cation do not halt MLEs. However, MLE restratifi-
cation may not overtake convective destratification.
Indeed, here the basin-average ML stratification de-
creases each night as the MLE w′b′ is dwarfed by
the peak cooling. Yet, the carefully chosen balance
between nighttime cooling and solar heating in these
simulations is tipped by the MLE flux so that the
long term tendency is toward a shallower ML. In
the ocean and in realistic models a balance will ex-
ist between long-term-average (e.g., monthly) sur-
face forcing and MLE restratification, while during
active convection the effects of MLEs will be sec-
ondary. MLE restratification does not prevent ac-
tive convection but immediately initiates restratifi-
cation when convection ceases, during the daytime
here and at the edge of the cooling region in Haine
and Marshall (1998).

4. Diagnostic Validation

This section validates the scaling argument pre-
sented above by diagnosing the magnitude of the
overturning streamfunction in MLE-resolving nu-
merical simulations.

The simulations provide instantaneous 3-
dimensional fields of buoyancy and buoyancy fluxes.
The relevant diagnosed quantity is,

Ψd =
1
T

∫ t0+T

t0

w′b′
xy

by
xy µ(z)−1dt, (35)



8 October 2007 FOX-KEMPER, FERRARI, and HALLBERG 15

Where the time averaging in (35) is restricted to an
interval after MLEs have reached finite amplitude
and before lateral boundary effects are important.
Appendix C discusses further details of the diagno-
sis.

Fig. 14a shows that Ψd scales well with

H2by
xz|f |−1

yt

for a set of 37 runs with balanced ini-
tial conditions and no diurnal cycle. The slope on
this figure demonstrates the scaling, and the inter-
cept amounts to Ce = 0.06 in (20). Fig. 14b shows
that the same scaling holds over the whole set of 241
simulations varying front strength, initial stratifica-
tion, front width, vertical and horizontal viscosity,
rotation rate, etc. Consistent with Fig. 3, balanced
and unbalanced simulations obey the same scaling.
The diurnal cycle introduces noise in the estimation
of Ψd, as can be anticipated from the noisy after-
noon results in Fig. 12, and increases the estimate
of Ce to near 0.08. The scaling agrees best when Ψd

is large, which is when MLE restratification is most
important (Fig. 14b).

The magnitude of Ce may be compared to other
studies measuring baroclinic eddy horizontal fluxes
by using the scaling for the vertical flux (12) and
converting to an horizontal flux with (13). Cenedese
et al. (2004) present a laboratory result for horizon-
tal flux scaling approximately equivalent to Ce =
0.05, and cite many studies covering a range equiv-
alent to 0.02 < Ce < 0.12. The wide range found in
these studies is likely an artifact of fitting inappro-
priate scaling laws to v′b′ and consequently folding
parameter variations (of Ri, for example) into the
measured ’constants’ of eddy processes.

A clever intuition might arrive at the scaling
Ψ ∝ CeM

2H2µ(z)/|f | by pure dimensional analy-
sis, but dimensional analysis cannot rule out nondi-
mensional parameters. Dependence on Ri is quickly
eliminated. Figs. 14c-d show that the scaling of
Stone (1972b) from (24) and (17),

Ψs = Cs
H2by

xz
µ(z)

|f |
1√

1 + Ri
, (36)

and Green (1970) from (30) and (15),

Ψg = Cg
H2by

xz
µ(z)

|f |
√

Ri, (37)

have substantially more scatter than Fig. 14a con-
firming the scaling proposed in (20).5 Fig. 14f shows

5The similar scalings of Canuto and Dubovikov (2005) and
Visbeck et al. (1997) are equivalent to Stone and Green and
have more scatter, too.

that this scatter is associated with erroneous depen-
dence on the time-evolving Ri, rather than other
factors. (Using the initial value of Ri instead of a
time-evolving value produces an order of magnitude
more scatter for these scalings, not shown). Fig. 14e
shows there is no systematic trend with Ri in the
departures of Ψd from (20), nor is there a system-
atic trend with the initial value of Ri (not shown).
Dependence on Ro through the frontal width Lf ,
as in (29) and as assumed by Haine and Marshall
(1998) is irrelevant as soon as ∆y > Lf , which oc-
curs soon after finite amplitude is attained. A figure
like Fig. 14e, but with Ro as ordinate shows no de-
pendence on Ro (not shown).

Additional potentially relevant nondimensional
quantities appear in the problem, such as (H/Lf ),
Smagorinsky coefficient (Sm), grid resolution to
front width (∆x/Lf ), Ekman number (Ek ≡
νH−2f−1), diurnal cycle timescale to inertial
timescale f/Ω, and interior stratification to ML
stratification (Nml/Nint). Nonlinear optimization
was used to test sets of nondimensional parameters
Pi to find exponents b(i) and the efficiency factor
Ce that reduced the difference between Ψd and the
product of parameters, CeH

2M2|f |−1ΠiP
b(i)
i . By

this method, an Ekman number factor of approx-
imately Ek−0.2 was found to improve the results.
No robust dependence on any other nondimensional
parameter was found (i.e.,the exponents were less
than 0.1 in magnitude). Haine and Marshall (1998)
note that the parameter space needed to distinguish
potential scalings is often unexplored. Even the
241 simulations here neglect some part of parame-
ter space. Neglected regions include nonhydrostatic
effects (H/Lf = O(1)), barotropic instabilities of
the front (RiRo2 � 1), and viscosity sufficient to
stabilize the ML instabilities. However, the scaling
presented here spans the regime relevant for MLEs.

5. Summary and Conclusion

Numerical simulations and theory reveal that the
ML is host to shallow frontal instabilities that act
to restratify the ML. This paper presents a parame-
terization of the restratification by these instabilities
cast as a streamfunction to represent the overturn-
ing of the front. The parameterization depends on
the horizontal buoyancy gradients and provides a
first attempt at incorporating the interaction of lat-
eral gradients and vertical mixing in the ML. This
parameterization will provide GCMs with a novel
climate sensitivity, so far ignored by other ML pa-
rameterizations. In three dimensions, the parame-
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terization takes the form,

Ψ = Ce
H2∇b

z×ẑ
|f | µ(z), (38)

with Ce between 0.06 and 0.08. The vertical struc-
ture µ(z) is well approximated by

µ(z) =
[
1−

(
2z
H + 1

)2
] [

1 + 5
21

(
2z
H + 1

)2
]
. (39)

This parameterization produces fluxes and an eddy-
induced velocity

u′b′ ≡ Ψ×∇b̄, u∗ = ∇×Ψ. (40)

Two companion papers (Fox-Kemper and Ferrari,
2007; Fox-Kemper et al., 2007) give further insight
into the skill, implementation, and importance for
climate of the parameterization.

Previous attempts to include eddy driven restrat-
ification by horizontal buoyancy gradients in ML
models relied on ad hoc modification of the GM
mesoscale eddy parameterization through tapering
functions. This approach fails as the mesoscale hor-
izontal fluxes–were they to flux along the shallow
ML slopes–imply excessive vertical fluxes and re-
stratify the ML immediately. Indeed, the GM ta-
pering schemes are introduced precisely to avoid in-
stantaneous ML restratification. In contrast, MLEs
provide the correct amount of eddy restratification
for the ML.

The approach in developing this parameterization
is novel in that scaling arguments are derived di-
rectly for the overturning streamfunction instead of
relying on diffusive closures for the horizontal eddy
fluxes. The scaling simply constrains the stream-
function to release PE at the rate expected for baro-
clinic spindown. Working in terms of diffusivities of-
fers less obvious constraints. Furthermore, the pa-
rameterization avoids parameters that are difficult
in modeling practice: Ri, deformation radius, in-
stability length scale, or the width of a ’baroclinic
zone’. Only the readily available ML depth and hor-
izontal buoyancy gradient are needed. The issue of
estimating the relevant horizontal buoyancy gradi-
ent in a coarse model is discussed in Fox-Kemper
et al. (2007). In principle, the approach here could
be extended to a mesoscale parameterization for use
in the ocean interior, but the nontrivial complica-
tions of variable background stratification are left
for a future investigation.

A few observational studies prove the existence
and ubiquity of MLEs. Flament et al. (1985) observe
the development of small-scale eddies along a ML
front that compare favorably with the phenomena

here. Munk et al. (2000) have noted MLEs in photos
taken by Astronaut Scully-Power. Recent observa-
tions also suggest the tendency for MLEs to release
PE from fronts (D’Asaro, pers. comm.). Houghton
et al. (2006) detect submesoscale along-isopycnal fil-
aments of tracer possibly indicating frontal instabil-
ities, although somewhat below the surface ML. Re-
peated MLE slumping of horizontal density fronts
(formed from salinity and temperature variations)
interspersed with strong vertical mixing events effec-
tively eliminates the horizontal density fronts, but
leaves behind compensated salinity and temperature
gradients (Young, 1994; Ferrari and Young, 1997;
Ferrari and Paparella, 2003). ML density compen-
sation is observed at the submesoscale (Rudnick and
Ferrari, 1999; Ferrari and Rudnick, 2000; Rudnick
and Martin, 2002). Hosegood et al. (2006) demon-
strate that density variability extends to the ML de-
formation radius and not beyond, in agreement with
our analysis of MLEs. Rudnick and Martin (2002)
show that density compensation is stronger for deep
MLs. All of these observations are consistent with
restratification by MLEs.

Now that a foundation has been laid, the effects
of MLEs may be studied in combination with effects
of wind (Thomas, 2005) and mesoscale frontogenesis
(Spall, 1997; Oschlies, 2002; Lapeyre et al., 2006).
Including the additional physics may improve the
fundamental parameterization here. However, the
results here and in FF show that for the case of
nonlinear spindown of a mixed layer front this pa-
rameterization has significant skill.
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A. Mesoscale-Submesoscale Resolving
Model Configuration

The coupled mesoscale-submesoscale simulation is a
200km×600km×800m channel on an f -plane with
temperatures restored near the walls to force a geo-
strophic flow. A sloping bottom keeps the eddies
out of the temperature restoring region. The ver-
tical resolution is 10m over the surface 100m, and
then enlarges by 20% for each deeper gridpoint. The
model is spun up with ∆x = 8km for 900 days, in-
terpolated and continued for 100 days at 2km reso-
lution. Fig. 1 shows day 925.
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Initially, H = 75m, and a 50m ML is preserved by
a diurnal cycle of 200W/m2 nighttime cooling and
just enough daytime penetrating shortwave radia-
tion (maximum heat flux −717W/m2) to give zero
diurnal average. KPP (Large et al., 1994) is used
to simulate ML turbulent processes. The heat flux
q is:

q = q0 + qd{max[cos(2πt), cos(πth)]− cos(πth)}.

The constants are q0 = 200W/m2, qd ≈
−1834W/m2, th = 1/3day, and t is model time in
units of days. The temperatures in the upper layers
are restored only on the warm side of the front.

Below H, the initial stratification is:

ρ
ρ0

= 1− α[T0 + e(z+H)/δ(∆Tv + ∆Th

2 tanh y−y0
L )]

∆Tv ≡ TL+TR−2T0
2

∆Th ≡ TR − TL

This stratification also is restored along the walls.
Constants are ML depth (H), left temperature (TL),
right temperature (TR), bottom temperature (T0),
thermal expansion coefficient (α), center of channel
(y0), thermocline depth scale δ and active channel
width (L) and depth (D).

QG linear instability solutions are used to tune
the parameters so that the most unstable modes
fit in the domain. The choices used (∆Tv = 5◦C,
∆Th = 8◦C, δ = 100m and D = 800m) provide
50 − 150km unstable modes. The fastest-growing
mode is near 80km with an efolding time near 6
days. These values are smaller than those expected
in the real ocean, but a sacrifice must be made for
cost. Horizontal temperature gradients are rapidly
mixed by the mesoscale to the boundary regions over
the sloping bottom and the efolding time decreases
to O(1 month). Thus, a temporal submesoscale to
mesoscale scale separation is present. A robust and
approximately statistically-steady mesoscale eddy
field persists throughout.

B. Rossby Adjustment Model Configura-
tion

The Rossby adjustment simulations begin with a
temperature front above a stratified interior. The
initial stratification is

b̄ = N2(z + H) +
LfM2

f

2
tanh

[
2(y − yo)

Lf

]
+ bo,

N2 =
{

N2
ml ∀ : z > −Ho

N2
int ∀ : z <= −Ho

The channel is 300m deep. The initial vertical strat-
ification has a ML, with parameters H,Mf , Nml, Lf ,
which rests on a more strongly stratified interior
with Nint. Rotation rate, and viscosities are also
varied (f,Sm, ν). Unbalanced or balanced ini-
tial conditions and a diurnal cycle (with 200W/m2

nighttime cooling as in (41)) were also used in many
of the simulations. Convective adjustment was used
in all simulations shown here, but test simulations in
nonhydrostatic mode and with KPP (Large et al.,
1994) mixing parameterization were run and gave
generally similar results (see BFF). A third-order
flux-limiting advection scheme was used for temper-
ature that does not require explicit diffusion, so none
was used. The selection of parameters for all 241
simulations used are given in Table 2.

C. Computation of Diagnostics

Verification of (20) begins with an along-channel
mean of the fluxes and buoyancy at every time snap-
shot. While (20) was derived with a constant M2 in
mind, in the simulations b̄y varies in cross-channel
direction to isolate the front from the effects of the
horizontal boundaries of the channel. Thus, care is
needed in cross-channel averaging. One might aver-
age over the initial location of the center of the front,
use averages weighted by b̄y, average only where b̄y

is over a critical value, or use the average over the
whole channel (given that w′b′ and b̄y are likely to
be nonzero over roughly the same region). All of
these methods agree when MLEs dominate, and dif-
fer only when the signal is contaminated (e.g.,by
gravity wave w′b′, by the front sliding out of the
averaging window, or by boundary effects). Using
the basin-average is closest to (12), but averaging
only over the center of the front reveals the rele-
vant Ri. Experimentation determined that averag-
ing over the center of the front (i.e.,where |b̄y| was
more than 10% of it’s median value) agrees with
the basin average to within 15%, so this was the
y-averaging used.

Another issue is quantifying the vertical structure
of the diagnosed overturning streamfunction. This
is readily accomplished by evaluating the best fit to
(21) (via the singular value decomposition pseudo-
inverse of the discrete form of µ(z) based on a di-
agnosed ML depth), or more simply by taking the
maximum absolute value of the streamfunction in z
over the ML. Estimates agree to within a few per-
cent, so the fit to (21) is used.

A suitable definition of H, the ML depth, is given
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by the integral constraint,

N2(H) =
Cm

H

∫ 0

−H

N2(z′)dz′, (41)

The base of the ML is the depth at which the local
buoyancy frequency is Cm times the buoyancy fre-
quency averaged from the surface. The results are
relatively insensitive for 1.5 < Cm < 3, Cm = 2 was
used. To find H and Hs, one begins at the level
of the minimum of N2 and separates these bounds
until (42) is satisfied.

N2(H) =
Cm

H −Hs

∫ −Hs

−H

N2(z′)dz′. (42)

While this more complex method is used diagnos-
tically to aid in determining the streamfunction
from the MLE-resolving simulations, it is probably
more complicated than needed in a parameterization
where (41) will suffice.

The parameterization focuses on the period of
strong restratification by finite-amplitude ML ed-
dies. Thus, for each simulation, a time window is
diagnosed. It begins when the rms v′ was more than
10% of the initial maximum mean shear velocity at
half of the ML gridpoints, i.e., when finite amplitude
is acheived. It ends if the total buoyancy difference
across the channel changes by 10% for half of the
ML gridpoints to avoid effects from the sidewalls.
Finally, the window is restricted to times when the
different y-averaging methods agree to within two
standard deviations to eliminate the occasional mo-
ment when M2 vanishes in a particular average. For
runs with a diurnal cycle, the averaging window is
further restricted to afternoon times. This time win-
dow generally agrees with the window one would
designate ’by eye’ as equilibrated, and the scaling re-
lationships shown in all figures are supported with
the ’by eye’ window as well. This window simply
reduces the scatter over the ’by eye’ version.

The relevant diagnosed quantity is thus

1
T

∫
〈w′b′〉
〈b̄y〉

µ(z)−1dt. (43)

Where µ(z)−1 indicates the pseudo-inverse of (21),
and the time-averaging occurs only over the time
window specified above.
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Figure 14: Magnitude of Ψd versus theories for magnitude of Ψ for simulations with diurnal cycle (blue) and
without (red) starting from balanced (circles) or unbalanced (squares) initial conditions. Plus signs and crosses
indicate balanced simulations where Ri0 > 1 or Ri0 < 1 initially. a) Shows Ψd in the balanced, no diurnal cycle

simulations versus Ceby
xz

H2|f |−1
yt

,Ce = 0.06, and b) includes unbalanced and diurnal cycle simulations, Ce = 0.08.

c) Shows Stone’s theory, (36), Cs = 0.53. d) Shows Green’s theory, (37), Cg = 0.0085. e) Ψd/Ceby
xz

H2|f |−1
yt

versus
Ri1/2. Also shown are lines parallel to Ri1/2 and (1 + Ri)−1/2. f) Ψd/Ψs (black dots) and Ψd/Ψg (green crosses)
versus Ri1/2. Also shown are lines parallel to Ri±1/2. Ψd, Ψs, and Ψg are defined in (35), (36), and (37).
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Symbol Name Typical Value
H ML depth 100m
b buoyancy (b = −gρ/ρ0, ρ0 = 1035kg/m3, g = 9.81m/s2) ±0.04m/s2

u, v, w velocity components ±0.05m/s
uH horizontal velocity ±0.05m/s
A along-channel mean of A and perturbation from A

A
xy

along and cross-channel mean
A

xyz
horiz. mean and vert. mean over ML

V,W typical eddy velocity scales 0.05m/s
U mean shear velocity scale (M2H/f) 0.05m/s

M2 front-averaged horiz. buoy. gradient −(2f)2

N2 front-averaged vert. buoy. gradient (buoy. freq.2)
M2

f initial maximum horiz. buoy. gradient −(2f)2

N2
ml, N

2
int initial ML and interior vert. buoy gradient (4f, 64f)2

Ω earth angular frequency (2π/day) 7.29× 10−5s−1

f Coriolis parameter Ω
τs Stone growth timescale 1 day from (3)

Ls, ks Stone fastest-growing lengthscale/wavenumber 1km from (2)

E(κ) kinetic energy power density spectrum (|u′Hb′|2
xyz

=
∫

E(κ)dκ)
Es(κ) kinetic energy power density spectrum prediction from (1)

KE,EKE kinetic energy, eddy kinetic energy
PE,EPE potential energy, eddy potential energy

Ψtr traditional streamfunction −v′b′/N2

Ψhs Held & Schneider streamfunction w′b′/M2

Ψd diagnosed streamfunction
Ψ 3d streamfunction
u∗ 3d eddy-induced velocity

∆x,∆z horizontal and vertical grid spacing Ls/10 from (2)
Lf , Lb front width, basin width 40∆x, 150∆x
x, y, z along-channel, cross-channel, and vert. coordinate 0 → Lb,−300 → 0m

C flux slope to isopycnal slope ratio, −M2v′b′/(w′b′N2) 2
Ce efficiency factor 0.06− 0.08
Cs efficiency factor (Stone parameterization) 0.1− 0.9
Cg efficiency factor (Green parameterization) 0.001− 0.009
k, l along- and cross-channel wavenumbers 1/Lb → 1/∆x

κ isotropic wavenumber (
√

k2 + l2) 1/Lb → 1/∆x

ζ vertical excursion scale
√

b′2/N2 0.2H
Ri0 initial cond. balanced Richardson number Ri0 = N2

0 f2/M4
0 0 → 256

Ri balanced Richardson number Ri = N2f2/M4 0 → 4500
Sm Smagorinsky coefficient (horiz. visc.=

[
Sm∆x

π

]2 √
(ux − vy)2 + (uy + vx)2) 1

ν vertical viscosity 0.0001m2/s
κv, κH vert. and horiz. MLE effective diffusivity

Table 1: Symbols used in this paper.
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Symbol Name Value Range
H ML depth {50, 200}m
M2

f horiz. buoy. gradient − ({1, 2, 4}f)2

Nml |ML vert. buoy. gradient|1/2 (Buoy Freq.) {0, 4, 16, 32}f
Nint |interior vert. buoy. gradient|1/2 (Buoy Freq.) {16, 64, 128}f

f Coriolis parameter {2Ω,Ω,Ω/2}
∆x standard horiz. grid Ls/10 from (2)
∆x tripled resolution test grid Ls/30 from (2)
∆z standard vert. grid 5m
∆z vertical test grid 1m
q0 nightime cooling {0, 200}W/m2

Lf front width {20, 40, 80}∆x
Sm Smagorinsky coefficient {1, 2, 4, 8}
ν vertical viscosity {0.0001, 0.001, 0.01}m2/s

Table 2: Parameters varied across simulations. Test grids were confirmed to agree with standard grids.


