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On the development of thermohaline correlations as a result 
of nonlinear diffusive parameterizations 

by Raffaele FerrarC* and W. R. Young* 

ABSTRACT 
Some oceanographic mixing parameterizations assume that transports depend nonlinearly on the 

buoyancy gradient; e.g., diffusivities are proportional to some power of the buoyancy gradient. In this 
paper we examine the consequences of these nonlinear-diffusion parameterizations by solving an 
initial value problem in which the t = 0 thermohaline fields are prepared as random and uncorrelated 
distributions of temperature and salinity. Solutions of the nonlinear diffusion equation as a ‘rundown’ 
problem show that correlations develop between the temperature and salinity. These correlations are 
such that the evolving thermohaline gradients tend to be strongly compensating in their joint effect on 
buoyancy. 

1. Introduction 

Oceanographers and meteorologists use models in which the transport of some quantity 
depends nonlinearly on horizontal gradients of the buoyancy. Perhaps the oldest branch of 
this family descends from Stommel’s (1961) “two box” idealization of the pole-to-equator, 
thermohaline circulation. Stommel posited a transport law in which the exchange of mass 
between the boxes is proportional to the buoyancy difference between the boxes. For 
buoyancy itself then, the buoyancy exchange (=buoyancy difference times mass ex- 
change) will be proportional to the square of the buoyancy difference. Passive tracers will 
be exchanged between the boxes at a rate which is proportional to the product of the 
buoyancy difference and the tracer difference. 

Welander (1971) improved on Stommel’s ad hoc specification of an exchange law by 
applying scaling arguments to the thermocline equations. Welander’s reasoning suggests 
that the mass exchange of the large-scale thermohaline overturning is proportional to the 
one-third power of the buoyancy difference, and the two-thirds power of the vertical 
diffusivity. 

Another class of examples is concerned with the parameterization of heat fluxes 
produced by baroclinic instability. The recent article by Visbeck et al. (1997) reviews this 
problem and recommends the adoption of an eddy diffusivity which is proportional to the 

1. Politecnico di Torino, Torino, Italy. 
2. Present address: Scripps Institution of Oceanography, University of California at San Diego, La Jolla, 

California 92093-0230, U.S.A. 

1069 



1070 Journal of Marine Research [55,6 

horizontal buoyancy gradient; in this case, as in Stommel’s box model, the flux of 
buoyancy is proportional to the square of buoyancy gradients. The extensive baroclinic 
turbulence simulations of Pavan and Held (1996) suggest an even stronger dependence of 
flux on gradient; viz., buoyancy flux is proportional to the fourth power of the buoyancy 
gradient. 

A third class of examples concerns the transport of heat and salt in mixed layers and 
other shallow systems with strong vertical mixing. Young (1994) has developed a mixed 
layer model in which the shear dispersion of heat and salt produces cubically nonlinear 
diffusive terms in the vertically averaged conservation equations. This mechanism, which 
is most potent on relatively small scales for which there is ageostrophic down-pressure 
gradient flow, is buoyancy driven shear dispersion acting on buoyancy itself (Erdogan and 
Chatwin, 1967, or the review by Young and Jones, 1991). Models such as this have found 
application in estuarine dynamics (e.g., Godfrey, 1980). 

These nonlinear diffusion models have been introduced using idealized box models, or 
by arduous multiple scale expansions, or as empirical scaling laws. The different scenarios 
span the full range of space and time scales which are of interest to oceanographers: from 
the planetary scale of the thermohaline circulation, through the deformation scale dynam- 
ics of baroclinic eddies, down to the ageostrophic circulations in shallow stratified systems. 
One largely pedagogical goal of this article is to find some middle ground between these 
different approaches and present arguments emphasizing the unity and simplicity of the 
underlying physical ideas. Indeed, the central idea is the same in all cases: horizontal 
buoyancy gradients create down-pressure gradient flows that release the potential energy 
stored in stratification. Because the strength of the velocities depends on the buoyancy 
gradient, so must the transport of all advected tracers (including buoyancy itself). 

A second goal of this article is to understand some implications of these nonlinear 
transfer models. Given that fluxes depend nonlinearly on the buoyancy gradient, what are 
the likely observable consequences of this nonlinearity? An example is given by Chen and 
Young (1995) who use a nonlinear transfer model to explain the widely observed 
phenomenon of ‘density compensation’ between temperature and salt gradients in the 
mixed layer. In frontal zones, oceanic density compensation is observed on scales of 10 to 
100 kilometers (see, for example, Roden (1977, 1980, 1986); Niiler (1984); Colin de 
Verdiere et al. (1986); Yuan and Talley (1992)). But, particularly in the mixed layer, there 
are also observations of the phenomenon on scales of 1 to 10 kilometers (for example, 
Flament et al. (198.5); Samelson and Paulson (1988); and Rudnick (1996)). The model of 
Chen and Young is based on the assumption that random straining by mesoscale turbulence 
creates property fronts in the mixed layer and that the equilibrium width of this population 
of fronts is determined by a balance between the strain and a small-scale nonlinear 
diffusive process. Because of the nonlinearity, there is a systematic relation between the 
‘strength’ of a front (i.e., the buoyancy jump across the front) and the frontal width; 
stronger fronts tend to be thicker fronts. As a statistical consequence of this correlation 
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Figure 1. Definition sketch: the tracer is contained in a channel - HI2 < z < H/2. The velocity has no 
net horizontal transport, ii = 0. 

between strength and thickness, Chen and Young show that the temperature and salinity 
gradients are correlated in the sense that there is partial cancellation in their joint effect on 
buoyancy gradient. In Section 4 we revisit the issue of density compensation and view it 
from the perspective of an initial value problem. 

Pierre Welander was fascinated by the dynamic asymmetry between heat and salt; he 
took it as a challenge to formulate problems in which this asymmetry is still important, 
even though the two constituents have the same diffusivity. Welander’s insight is that even 
if T and S differ only in their boundary conditions, then instability of a statically stable state 
is still possible (Welander, 1989). We like to think that Welander might have found the 
following contribution interesting as an extreme example of what can happen when T and S 
are identical in all respects (including boundary conditions). We will see in Section 4 that 
the kinematic combination T + S (sometimes referred to as ‘spice,’ e.g., Munk, 1981) still 
has an interesting evolution which theoretical oceanographers tend to overlook by focusing 
exclusively on the active combination T - S. 

2. Shear dispersion: A comparison of different models of vertical mixing 
We begin our discussion by collecting some basic results on shear dispersion. Consider 

the dispersion of some tracer (concentration c(x, z, t)) in a shallow layer. One can think of 
this layer as the mixed layer of the ocean, or an estuary, or some other configuration with 
high aspect ratio; i.e., with depth H much less than the horizontal scale L. The main point 
here is that there are two very different timescales. The fast timescale is mixing over the 
depth H and the slow time scale is that associated with horizontal transports. 

With the notation of Figure 1, the mathematical model is 

c, + UC, = mix, (2.1) 

where ‘mix’ indicates some model of the vertical mixing. We compare three different 
models of mixing and show that they all lead to the same conclusion. The three mixing 
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models are 

[55,6 

mix, = DC,, 

mix, = 7-l (C - c), 

mix, = vertical homogenization at intervals of 7. 

(2.2a,b,c) 

The model in (2.2a) is the familiar diffusion model, and in this case our problem is identical 
to Taylor’s shear dispersion (1953). The second model in (2.2b) is ‘relaxation to vertical 

average’: the vertical average of the tracer over the layer is denoted by 

Then, with (2.2b), the tracer concentration is continuously nudged toward the local vertical 
average in (2.3) (e.g., Young, 1994). If the layer in Figure 1 is being mixed by eddies whose 
scale is comparable to H then model (2.2b) might be more realistic than the diffusion model 
(2.2a). 

The ‘intermittent mixing model’ in (2.2~) works by letting the tracer advect for a time r 
(that is, the right-hand side of (2.1) is zero) and then instantaneously vertically homogeniz- 
ing the tracer. Thus, at times t = nr, c(x, Z, t) - C(X, t). This might model event-driven 
mixing, such as the passage of storms, or mixing which occurs only at some point in a tidal 
cycle (e.g., Linden and Simpson, 1988). 

Our conclusion is that, in the long term, the large-scale dispersion of the tracer can be 
described by an effective diffusion equation for C(X, t): 

The effecive diffusivity in (2.4) is given by Deff = ollJ2r where (Y is a model-dependent 
dimensionless constant, U is the scale of U(Z), and r is the vertical homogenization time. 
For the model in (2.2a), r = H2/D and then (2.4) is shear dispersion (Taylor, 1953). 

Thus, the details of the mixing model on the RHS of (2.1) are not important; one expects 
that the combination of the sheared velocity field, U(Z), and the vertical mixing will always 
produce an effective diffusion coefficient in the vertically averaged tracer equation in (2.4). 
In this case it does not pay to get too exercised about which of the models in (2.4) is ‘better’ 
or ‘more realistic.’ In various circumstances all three models are plausible representations 
of small-scale mixing processes, and all three models result in an effective diffusion 
equation that describes the dispersion of tracer on large scales and long times. 

There are many ways of deriving (2.4). Let us take a simple and instructive route, and 
use the episodic mixing model in (2.2~). Without any loss of generality we can take U = 0. 
(If U # 0 we can change frame so that the vertically averaged velocity is zero.) Suppose 
that one maintains a uniform gradient of tracer, G, and that at t = 0+ a mixing event has just 
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Figure 2. The flux as a function of time is a “sawtooth.” (a) If the mixing events occur periodically, 
the flux is a periodic function of time. (b) If the events occur at random intervals, then the sawtooth 
is irregular. 

occurred so that the tracer is vertically homogenized 

c(x, z, 0+) = Gx. (2.5) 

Then, in the interval before the next mixing event, the tracer is advected by u(z) so that 

c-(x, z, t) = G[x - u(z>tl when O<t<7. (2.6) 

The result in (2.6) is the solution of (2.1), with zero RHS, and (2.5) as an initial condition. 
Now at t = -r the tracer is again vertically homogenized so that the concentration returns to 
(2.5). It looks like nothing has happened as a result of the advection and mixing. But the 
interesting point is that there has been a flux of tracer during the interval between mixing 
events: 

F(x, t> = ;smz2 u (z)G [x - u (z>tl ck, 
(2.7a,b) 

= -zGt, when O<t<7, 
where we have used U = 0 in passing from (2.7a) to (2.7b). The flux as a function of time 
has the sawtooth pattern shown in Figure 2; after each mixing event the flux starts at zero 
and then grows linearly till the next event homogenizes the tracer and resets the flux to 
zero. 

The final step is to note that the time average of the flux in the top panel of Figure 2 is 

(F) = -@rG. (2.8) 
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The expression in (2.8) is the flux-gradient relation which is typical of a diffusive process; 
the diffusivity is Deff = 7~12. 

It is educational to repeat the calculation above for the other two mixing models in (2.2); 
in both cases one looks for a steady solution of the form c(x, z, t) = TX + c’(z). 
Substitution gives an easy equation for c’(z) and then the final step is to calculate the 
vertically averaged flux and identify the constant of proportionality in the flux-gradient 
relation as the effective diffusivity. We can summarize the results of these calculations by 

giving explicit expressions for the effective diffusivity in the three cases 

D dfl 
= D-‘p, 

D -5 eff2 = TU ) (2.9a,b,c) 

D eff3 = l/272, 

where in (2.9a), I+(Z) is the streamfunction of the velocity in Figure 1; i.e., u = -+,. At the 
level of scale analysis ~JJ - HU and all three results in (2.9) have DeE - U 2~ where T is the 
vertical mixing time. 

A distinguishing characteristic of shear dispersion is that weaker vertical mixing (i.e., 

larger 7) produces stronger horizontal mixing. At first this seems curious, but the sawtooth 
graph of F(t) in Figure 2 shows how this inverse dependence arises. The sheared velocity 
field ‘unmixes’ the tracer by tilting over the initial field in (2.5) and the horizontal flux 
grows continuously as this unmixing proceeds. If the time between mixing events is 
increased, then one ‘accumulates’ more flux during the advective process. 

The flux-gradient relation in (2.8) was obtained by considering a uniform gradient, G, 
and averaging in time over many cycles. We now argue that the same diffusivity, &r/2, 
approximately describes the dispersion of tracer in situations in which the gradient is not 
constant. That is, the vertically averaged tracer diffusion equation is 

c, = (&2)C,; (2.10) 

one can add additional complications such as sources etcetera. The approximation being 
made here is that the flux-gradient relation in (2.8) applies locally, provided that the 

concentration C is ‘slowly varying.’ To understand ‘slowly varying,’ observe that in the 
interval between mixing events a fluid particle travels through a distance /-- UT. If the 
concentrtion gradient is approximately uniform over this length scale, then (2.8) will apply 
locally. The length scale associated with the variation of the concentration gradient is 
c,Ic,. Thus we reach the conclusion that (2.10) applies provided that Urc,Ic, << 1. 

The conclusions above can be reinforced by solving an initial value problem. Suppose 
that c(x, Z, 0) = exp [ikx]. Then the solution of the advection equation (2.1) in the first 
interval, when 0 < t < 7, is 

c(x, z, t) = exp [ik(x - u(z)t)]. (2.11) 
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Now at t = r the held in (2.11) is instantaneously vertically homogenized. As a specific 
example, take u = SZ. With this velocity profile, vertically averaging (2.11) at t = 7 gives 

c(x, z, T+) = sine (K) exp [ikx], (2.12) 

where SinC K = K- ’ sin K and K = kHsd2. The tracer distribution in (2.12) is proportional 
to the initial condition, but there is k-dependant attenuation factor. Iterating the process one 
finds that after n mixing events 

c(x, z, no’) = sin? (K) exp [ikx], 

= exp (n In [sine K] + i/a). 

(2.13a,b) 

If kHd2 < 1 (i.e., on large horizontal scales), then In [sine K] = -(kHsT)2/24. Thus, since 
t = wr, one can rewrite (2.13b) as 

c(x,Z,nT+) = exp [-DeBk2t + ikx], (2.14) 

where Defl. = H2s2~/24 is the effective diffusivity in (2.9~) with u = sz. In this example we 
see explicitly how the small horizontal wavenumbers decay at the rate predicted by the 
diffusion equation (2.10). 

Before we leave the passive scalar problem we mention an embellishment of the 
intermittent mixing model. Suppose that the interval between mixing events is a random 
variable; immediately after an event has occurred, the time to the next event is determined 
by selecting T  from a probability distribution with probability density function .?(T) (see 
the lower panel in Fig. 2). What is the effective diffusivity in this case? One can show that 
the generalization of (2.9~) is 

1 E(T2) 1 
D,, = - ~ u 

2 E(T) ’ 
(2.15) 

where E( f(7)) = Jomf(7) Y'(T) dr is the average using the probability density function of 
intervals between mixing events (normalization is E( 1) = 1). It is clear from Figure 2 that 
more tracer is transported when, by chance, there is a large interval with no mixing events. 
Intuitively, this is the reason for the appearance of the second moment, E(T~), in (2.15). 

3. Shear dispersion in a stratified, nonrotating fluid 

Now let us turn to a problem in which the tracer is buoyancy. This case is different from 
the ones discussed above because buoyancy is dynamically active. As far as possible we 
follow the same route as Section 2. Thus, we consider the horizontal fluxes associated with 
maintaining uniform horizontal gradients of temperature, salinity and buoyancy. There are 
some algebraic complications introduced by considering the possibility that the tempera- 
ture and salinity gradients are not parallel. But this generalization is very useful, and so we 
make no assumptions concerning the colinearity of the thermohaline gradients. 

Consider a nonrotating stratified fluid. We use the Boussinesq approximation and write 
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the density as p = p,,[l - g-t B(x, y, z, t)] where B(x, y, z, t) is the buoyancy. Assuming 
that the equation of state is linear, and using suitable definitions, the buoyancy is 

B=T-S, (3.1) 

where T is the ‘temperature’ and S is the ‘salinity.’ With our definitions, S, T, B and g all 
have the dimensions of acceleration. 

The equations of motion are then 

Du 

iYt- 
- -VP + B4 + mix,, 

v.u=o, 
DS . 
E = m1x3, 
DT . 
ot = m1x39 

(3.2) 

where u = (u, v, w) and “mix,” indicates that we use the episodic mixing model in (2.2~) 
and apply this instantaneous homogenization to momentum and the stratifying compo- 
nents. Suppose that at t = O+ a mixing event has just occurred so that T and S are vertically 
homogeneous and the momentum is also completely mixed. Thus the initial condition is 

Sk Y, z, 0) = Gs . x, T(x, Y. z, 0) = 6. x, u(x, y, z, 0) = (0, 0, 0). (3.3) 

In (3.3), the two gradient vectors Gs and Gr are constant vectors in the horizontal plane and 

x = (x, y, z). 
There is an exact solution of (3.2) and (3.3) which illustrates how dense fluid flows under 

light lluid and so releases the potential energy stored in the stratification: 

u = -Gezt, 

t2 
p=GB.xz+GB.GBz2~, 

t2 
S=G,~x+G,~G,z~, 

t2 
T= G,.x + G,.G,zy, 

(3.4a,b,c,d) 

where GB = Gr - Gs is the horizontal buoyancy gradient. The solution above applies only 
before the system is reset by vertical mixing, i.e., only when 0 < t < 7. 

One can easily verify that (3.4) is a solution of (3.2) and (3.3) by substitution: form B = 
T - S by subtracting (3.4~) and (3.4d) and then the pressure in (3.4b) is determined by the 
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hydrostatic relation. There is a horizontal pressure gradient, Vp = G,z, parallel to the 
buoyancy gradient and proportional to z. This pressure gradient drives the accelerating, 
vertically sheared flow in (3.4a): this is simply dense fluid slumping under lighter fluid. 
Finally, one can show that the tracer advection equations (3.2~) and (3.2d) are satisfied. The 
temperature and salinity fields are vertically homogeneous at t = 0, but because of the 
accelerating vertical shear in the velocity field they develop vertical structure which grows 
like t2. 

Notice that in (3.4) we have assumed that there is no vertically integrated transport, ii = 
0. (We use the notation in Fig. 1, so that the fluid occupies the region H/2 > z > -H/2). 
The condition li = 0, which might be enforced by distant vertical sidewalls, is used to 
determine the constant of integration which arises when one determines the pressure by 
integrating the hydrostatic relation. Thus, the net horizontal flux of mass in the layer is 
zero. However there is an exchange of mass (analogous to a lock exchange, in which dense 
water flows below light water). This is the fundamental mechanism behind all of the 
different models mentioned in the introduction. Even in rotationally dominated systems, 
such as Stommel’s (196 1) thermohaline problem, there are inevitably processes which 
release the gravitational potential energy stored in horizontal nonuniformities of the 
stratification. Indeed, an analysis of the energy balance of the solution (3.4) is instructive. 
One finds that the potential energy is decreasing as the fluid ‘restratifies.’ All of the kinetic 
energy that appears in (3.4a) comes from the local lowering of the center of mass; the 
pressure work terms are identically zero. 

The main point here is that the velocities associated with the release of potential energy 
are larger when the horizontal buoyancy gradients are larger. Consequently, as we show 
below in (3.5), the net flux of heat and salt depends nonlinearly on the buoyancy gradient. 

We are uncertain of the origins of the solutions in (3.4); a rotating version of this 
problem (but with only one stratifying component) appeared as a question in the 1977 
general exam of the MIT-WHO1 Joint Program in Oceanography. Different elaborated 
versions of (3.4) have been used by Simpson and Linden (1989), Roemmich et al. (1994) 
and Tandon and Garrett (1994) as illustrations of how horizontal buoyancy gradients drive 
vertically sheared horizontal flows which in turn create vertical buoyancy gradients 
(‘restratification’). 

Although the various balances in (3.4) are easy to understand intuitively, there are some 
nonintuitive implications for the fluxes. For instance, using (3.4a) and (3.4~) the salt flux 
which occurs during the interval between mixing events is: 

F, = l/H s-z2 
1 

US dz = - 24 (G, . GB)GBH2t3 when 0 < t < 7. (3.5) 

Because the scalar is active, the flow is accelerating between mixing events and so the flux 
in (3.5) grows like t3, rather than following the linear-in-t growth shown in Figure 2. The 
final step is to calculate how much salt is transported by integrtaing (3.5) in time, and then 
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averaging over many mixing cycles. One finds that the analog of (2.8) is 

(F,) = - %cH~T~ (G, . G,)GB. (3.6) 

The flux of salt is proportional to the cube of the tracer gradients and, remarkably, the flux 
of salt is in the direction of the buoyancy gradient3 

With (3.6), and the analogous result for temperature, we can now write down the coupled 
equations that describe the buoyancy driven shear dispersion of vertically averaged heat 
and salt: 

T, = yV . [(VB . VT)VB], S, = yV. [(VB . VS)VB], (3.7) 

where, from (3.6), y = H2~3/96. Notice that if we subtract (3.7a) from (3.7b) then we 
obtain a closed equation for the buoyancy viz. 

B, = p. [(VB . VB)VBI. (3.8) 

One might then be tempted to ignore the passive combination of T and S, called ‘spice’ by 
Munk (198 l), as trivial. However, the passive combination is sometimes used to interpret 
oceanographic data and so it is worthwhile to develop some understanding of spice 
dynamics which goes beyond the early works of Stommel(1962) and Veronis (1972); this 
is a goal of Section 4. 

In Section 2 the effective shear dispersion coefficient was obtained using three different 
models of vertical mixing. One can easily go through the same exercise here. In fact, the 
one-dimensional version of the nonlinear diffusion equation (3.8) was first obtained by 
Erdogan and Chatwin (1967) using molecular diffusion and viscosity as a mixing model.4 
Young (1994) obtained (3.7) using relaxation to vertical average as a model of mixing. 
These alternative models differ from the episodic mixing model because heat, salt and 
momentum do not have to mix at the same rates. Thus Chatwin and Erdogan have both a 
viscosity, u, and a buoyancy diffusivity, K. Young’s model relaxes the momentum to its 
vertical average on a time scale rU, while T and S relax with a time scale T. The coupled 
nonlinear diffusion equations in (3.7) result from all three models; the details of the mixing 
model are contained in the coefficient y in (3.7). 

The flux-gradient relation in (3.6) is obtained by assuming that the gradients Gs and GT 
are uniform. Thus, validity of (3.7) requires that VT and VS are ‘slowly varying’ so that the 
solution in (3.4) applies locally. To understand the implications of ‘slowly varying,’ 
observe that between mixing events, fluid travels through a distance of order 6-- B,HT~. If 
the buoyancy gradient ‘looks’ uniform over this distance then we expect (3.4) to apply 
locally. The obvious length associated with the variation of the buoyancy gradient is B,IB,. 

3. Eddy mixing arguments would say that the flux of salt is parallel to the salt gradient, But in this problem the 
velocity in (3.4a) is always in the direction of the buoyancy gradient, and so are all the shear dispersive fluxes. 
However, notice that, from (3.6), Fs GS < 0; thus the flux of salt tends to be down the salt gradient. 

4. Because Erdogan and Chatwin used molecular diffusivity, rather than episodic mixing, the vertical mixing 
time scale 7 is proportional to Hz. In this case, the analog y is proportional to the eighth power of the layer depth 
and inversely proportional to the factor V*K where Y is the viscosity and K the buoyancy diffusivity. 
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Requiring that this length scale be less than /shows that ‘slowly varying’ means that the 
nondimensional number B,,HT* is small. 

Simpson and Linden (1989) give an interesting theoretical and experimental discussion 
of the role of buoyancy curvature, B,,, in driving frontogenesis. In the simple solution in 
(3.4) the buoyancy curvature is zero and there is no frontogenesis: the B-surfaces tilt over 
and maintain equal spacing; the horizontal buoyancy gradient is constant. But if the initial 
condition has nonzero buoyancy curvature, then Simpson and Linden show that the 
buoyancy gradient can increase. If there is no mixing then one suspects that B, might 
become infinite in a finite time; this singularity is frontogenesis. With the episodic mixing 
model there is a race between the next homogenization event and the singularity formation: 
given an initial condition which happens first? Simpson and Linden show that the time to 
singularity formation scales like lI&?. This race is then decided by the same nondimen- 
sional parameter, BxxH~2, that we identified in our discussion of the validity of (3.7). 

Finally, let us discuss the range of oceanic parameters for which the nonlinear diffusion 
equations (3.7) might apply. In our derivation we have ignored the effects of rotation (for 
which, see Young (1994) and Talley (1998)) and we have averaged over the depth, say H = 
100 m, of the mixed layer. For the time between mixing events we take r - lo4 s. On scales 
of Ax - 1 km, horizontal buoyancy gradients GB of order 10e7 sC2 are common in the 
mixed layer (this corresponds to a AT - 0.1” over a distance Ax - lo3 m). With H - 
100 m, the velocity obtained from (3.4a) is u - GBH7 - 0.1 m s-i. With these same 
numbers, if we estimate B, as GslAx, again with AX = 1 km, we find B,Hr* - 1. Thus the 
nonlinear diffusion model is marginally valid (and likewise the frontogenetic mechanism 
of Simpson and Linden (1989) cannot be discounted in the ocean mixed layer). 

4. Creation of density compensated thermohaline structure by nonlinear diffusion 

In this section we explore the implications of the nonlinear diffusion equations (3.7) in 
an idealized setting. Suppose that spatial variations in temperature and salinity are created 
at some instant by random forcing and that these nonuniformities subsequently disappear 
as a result of the nonlinear diffusion. This is a “rundown” problem in which the 
down-gradient diffusion eventually erases the initial variations in temperature and salinity. 
There is no internal mechanism for producing new randomness; all the randomness is 
inherited from the initial conditions. One can imagine that statistical problems such as this 
are relevant to what happens when a shallow layer of water is forced by random 
meteorological inputs. 

We show that even though the initial salinity and initial temperature are uncorrelated, the 
result of the nonlinear diffusion is to create correlations between the thermohaline fields 
and their gradients. The physical reason is that in the initial conditions there will be regions 
in which temperature and salinity gradients happen to partially compensate in their joint 
effect on buoyancy. The nonlinear diffusion coefficient will be small in those regions, and 
so the initially compensating gradients will persist. Likewise, the initial condition will also 
contain regions in which the thermohaline gradients accidentally reinforce in their joint 
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effect on buoyancy; those regions are then subject to strong diffusion and the gradients will 
disappear quickly. The consequence of this selective decay is that the thermohaline 
structure becomes ‘spicy’ as the system runs down. 

However, selective decay is not the whole story: we will show that the nonlinear 
diffusion also actively produces compensated temperature and salinity gradients. 

We consider the simplest problem in which the temperature and salinity have spatial 
variations in only the x-direction. Eqs. (3.7) then reduce to 

The one-dimensional case is sufficient to illustrate the development of thermohaline 
correlations from random initial conditions and the simplicity of a one-dimensional model 
enables us to perform extensive Monte Carlo simulations and make analytic headway. But 
before discussing the evolution of random initial thermohaline fields, we derive some 
analytic solutions of the nonlinear diffusion equations. This exercise explains some 
counterintuitive features of the model and establishes a framework for interpreting the 
Monte Carlo simulations. 

a. Self’similar solutions of the nonlinear diffusion model. To simplify the algebra we 
introduce buoyancy B = T - S and spice Q = T + S as new independent variables. In 
terms of these variables the nonlinear diffusion equations (4.1) are 

4 = 0;3)xr Q, = r(B:Qx>,> (4.2a,b) 

Differentiating (4.2) with respect to x gives alternative diffusion equations for the 
buoyancy gradient h = B, and the spice gradient j = Q,: 

h, = y(h”),, .A = rV&. (4.3a,b) 

Physically, h(x, t) is the active tracer whose dynamics is governed by a nonlinear 
power-law diffusion. The evolution of the passive tracer j, or for that matter of any other 
passive linear combination of TX and S,, depends on the buoyancy gradient h and on the 
initial profiles. 

The nonlinear coupled equations (4.2) and (4.3) have analytic solutions only for 
particular choices of the initial conditions. A simple and instructive choice is 

h(x, 0) = G(x), j(x, 0) = jo. (4.4a,b) 

In their discussion of thermal conduction in fluids, Landau and Lifshitz (1993) give a 
self-similar solution of (4.3a) with the initial condition in (4.4a): 

h = Ca(yt))‘/4(2/rr)J1 - n*H(l - n*), q = crx/(yty4, (4.5) 

where H(x) is the Heaviside step function and (T = (rr2/48C ) * ‘14. The initial condition has a 
sharp buoyancy front of strength C; the diffusive evolutions preserves the strength of the 
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Figure 3. Self-similar solutions of the Eqs. (4.3). (Upper panel) Scaled profiles of buoyancy B and 
buoyancy gradient h. (Lower panel) Scaled profiles of spice Q and spice gradientj. 

front, C, but the width of the front increases as t1’4 (see Fig. 3). The buoyancy gradient is 
zero when 1-q > 1 i.e., for x > (yt)1’4/a. In other words, there is an expanding front 
separating the two regions which have not yet felt the influence of the initial discontinuity 
in buoyancy. This behavior is very different from the well-known Gaussian solution of the 
analogous problem with constant diffusivity, for which all regions of space are immedi- 
ately affected by an initial point disturbance. 

There is also a self-similar solution of (4.3b) with the initial condition in (4.4b). The 
details are in the Appendix and the result is 

j= 
3j, cash [& arcsin q]/cosh (IT/&), if 1~ 1 < 1; 

.i0, if lql > 1. 
(4.6) 

The solution in (4.6) is shown in the lower panel of Figure 3. In the regions where h = 0 the 
initially uniform spice gradient is undisturbed. In the region where h # 0 the profile of 
spice is deformed. Remarkably, near the edges of the disturbed region, the spice gradient j 
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is larger than its initial value (by up to a factor of 3). The creation of enhanced spice 
gradients is in contrast with the continuous dissipation of buoyancy gradients. 

It is helpful to physically interpret this simple problem. The initial conditions correspond 
to a vertically averaged mixed layer composed of two water masses of different density 
separated by a sharp front: the solution (4.5) describes the nonlinear diffusion of this front. 
The initial condition also has a uniform gradient in spice. The spice is a passive tracer and 
is diffused only where there is a buoyancy gradient. The dashed curve in the lower panel of 
Figure 3 shows the developing profile of spice. In the region where the buoyancy gradient h 
is nonzero the spice gradient, j, is nonuniform. In the central region j is reduced; but at the 
edges j is three times larger than its initial value. Thus nonlinear diffusion can result in a 
substantial localized amplification of pre-existing spice gradients. This process has an 
important role to play in the statistical problems discussed next. 

b. A scaling argumentfor the decay of buoyancy variations. We now focus our attention on 
the evolution of random initial conditions in the temperature and salinity fields. We denote 
the correlation length of the initial random buoyancy distribution by /a and the RMS 
buoyancy fluctuations by .gO. Thus, the initial buoyancy gradient is of order XQ&. We 
assume that the domain has a horizontal length L B- /a so that there are many independent 
samples of the buoyancy field. We now give a simple scaling argument for the decay in 
time of the RMS buoyancy fluctuations s(t) and the increase in time of the correlation 
length F(t) as the random initial distribution runs down under the dynamics in (4.1). 

Applying dimensional considerations to the diffusion equation (4.2a) gives a relation 
connecting .35’(t) and P(t) 

d.95 
-- 

dt 
y 9’ e-4. (4.7) 

A second scaling relation is obtained by arguing that diffusion, either linear or nonlinear, is 
a conservative averaging process. In a length k(t) there are 

N(t) - e(t)/&) (4.8) 

independent samples of the random initial condition. Then, from the central limit theorem, 
the RMS buoyancy fluctuations obtained by diffusively averaging the N independent 
samples scales as .%‘/ fi or, from (4.8), 

.29(t) - J e,V(t> 30. (4.9) 

Eqs. (4.7) and (4.9) are two relations for the two unknowns s(t) and F(t). It is easy to see 
that there is a power law solution5 

.x?(t) - .9&/Ty)-“10, c*(t) - ~(t/Ty)1’5, (4.10a,b) 

5. The same arguments show that for a linear diffusion equation with random initial conditions G - t”* and 
.A - t -1’4. 
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where ry = /i/y .X5’: is the fundamental time scale of the problem. 
The argument leading to (4.10) suggests that the solution of (4.1), with random initial 

distributions of T and S, will exhibit a self-similar scaling regime characterized by a t”5 
growth of the buoyancy correlation length. Up to this point we have considered only the 
buoyancy B = T - S. Before continuing with theoretical arguments we need to test the 
scaling argument in (4.10) by comparison with numerical solutions of (4.1). 

c. The numerical simulation. For the simulations we will use dimensionless variables. 
Buoyancy, temperature and salinity will be measured in terms of the initial RMS buoyancy 
variations ( .A&), lengths in terms of the initial correlation length (/a), and time in terms of 
ry = /i/r .Z’t. 7y is the time it takes to mix tracers over a distance /a using nonlinear 
diffusion driven by the initial RMS buoyancy gradients. In terms of nondimensional 
variables one simply sets y = 1 in (4.1). 

We take the initial temperature and salinity to have zero correlation and we introduce a 
parameter, (Y, to quantify the difference in the RMS contributions of salinity and 
temperature to that of buoyancy: 

(TS) = 0, a = (T’) - (S2), (4.1 la,b) 

where ( ) is an integral over the domain 

(4.12) 

The initial conditions are established by selecting T and S at each grid point using a 
uniform probability density function with zero mean such that 

1+ol 1-o 
(B2) = 1, (T2) = 2, (S’) = 2. (4.13a,b,c) 

Thus the initial correlation length is of the order of the grid spacing and the profiles of 
temperature and salinity are just white noise. Since the domain has a finite size, the 
conditions in (4.13) will not be precisely satisfied by the initial profiles. For instance, if one 
picks L = 10,000 random values of B from a distribution which satisfies (4.13a) then (B2) 
of this sample will typically deviate from 1 by a quantity of order l/& - l/100. 

The numerical calculations are performed by integrating the nondimensional coupled 
equations for the temperature and salinity gradients, obtained differentiating (4.1) and 
setting y = 1 

K), = tB~TA.v tsx), = tB,2Sx>,. (4.14a,b) 

Global conservation of heat and salt is satisfied by requiring that the gradients T, and S, 
vanish at both ends of the domain (i.e., ‘no-flux’ boundary conditions). We then solve the 
system in (4.14) on a discrete spatial grid with an explicit Euler forward scheme in time and 
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Figure 4. Comparison of numerical (dashed line) and analytic (continuous line) solutions of the 
coupled thermohaline equations (4.3). The initial conditions for h are given by (4.4) evaluated at 
t = lo-* with C = 13.06. The initial condition forj is simply j = 1 everywhere. The peak of h falls 
exactly on a grid point. The grid spacing is equal to 1. (Left panels) Comparison of the numerical 
results and the analytic solution (4.4) at t = 1 and t = 10“. (Right panels) Comparison of the 
numerical results and the analytic solution (4.5) at t = 1 and t = 104. The discrete space grid does 
not completely resolve the two j-spikes (whose maximum value is 3). 

finite differences in space. The initial time step, At, is short enough to accurately solve the 
set of ordinary, differential equations obtained by the spatial discretization of (4.14). As the 
simulation progresses, the buoyancy gradients become weaker and the time step can be 
increased while preserving numerical accuracy. 

We tested this simple numerical scheme by studying the evolution of the initial 
conditions in (4.4) and comparing the numerics to the analytic solutions in (4.5) and (4.6) 
(see Fig. 4). Because we cannot resolve a a-function the initial conditions for h is actually 
obtained by settin 

$ 

t = 0.01 and C = 13.06 in (4.5). This corresponds to a narrow single 
peak, of height 2 6, resolved with only a few points. The initial conditions for spice is Q = 
x; i.e., j,, = 1. The agreement between the analytic and numerical curves for h is shown in 
the left panels of Figure 4 at t = 1 and t = 104. In the right panels the corresponding 
comparison for j improves with time, because the self-similar solution applies only 
asymptotically as t - 00. The numerical scheme is not sensitive to the position of the initial 
buoyancy gradient peak with respect to the underlying grid. In Figure 5 we show a ‘worst 
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Figure 5. Comparison of numerical (dashed line) and analytic (continuous line) solutions of the 
nonlinear diffusion equation for h. The initial condition for h is the same as in Figure 4, but in this 
second example the peak falls half way between two grid points. The following three panels 
compare the numerical results and the analytic solution (4.4) at t = 102, t = lo3 and t = 104. 

case’ example in which the maximum of the initial peak in h is half-way between two grid 
points. The initial condition is otherwise the same as in Figure 4. The four panels show the 
profile at t = 0.01, t = 102, t = lo3 and t = 104. The agreement between the analytical and 
numerical curves remains good throughout this time interval. There is a systematic 
difference (equivalent to a slight discrepancy in the value of C) between the two curves 
which results from the poor resolution of the initial peak. 

The spatial structure of the thermohaline fields is best described in terms of buoyancy 
B = T - S, spice Q = T + S and their gradients h and j. Figures 6 and 7 show profiles of 
these fields at t = 100 and t = 1000 after their evolution from random initial conditions 
with (Y = 0 in (4.11). The simulations are run with N = 10,000 grid points and Figures 6 
and 7 show a typical subsection of 100 points in the center of the domain. The spice 
gradient profiles in Figures 6 and 7 reveal a number of spikes some of which are 5 times 
stronger than the maxima of buoyancy gradient. This is the first indication of the 
development of intermittency in the spice gradient or, equivalently, spicy density- 
compensated fronts. 

The profile of j in Figure 7 and the analytic solution in (4.6) (Fig. 3) present some 
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Figure 6. Profiles of B and Q (upper panel) and h andj (lower panel) at t = 100 after evolution from 
random initial conditions with (Y = 0 in (4.11). The simulations are run with N = 10,000 points and 
these panels show a typical subsection of 100 points in the center of the domain. 

interesting analogies. In both cases the spikes ofj are created in the neighborhood of zeros 
of h where h, = b, is large. In the rest of the domain, where h is larger, and h, smaller, j 
decays. The intermittency of j is then the result of spike formation in small regions 
surrounding the zeros of h. 

d. Statistical diagnostics. To provide a quantitative interpretation of the simulations we 
must analyze the numerical results from a statistical point of view. Figure 8 shows the time 
evolution of the mean square thermohaline fields from random initial conditions with (Y = 
0 and N = 10,000 grid points. The first observation is that the RMS temperature and RMS 
salinity in the top panel of Figure 8 have a nontrivial transient behavior. The dynamics of 
the transient can be explained in terms of the relationships that develop between the 
various terms in the identities 

(P) = (z-2) + (P) - 2(2x), (h2) = (T;) + (S;) - 2(&T,). (4.15a,b) 
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Figure 7. Profiles of B and Q (upper panel) and h and j (lower panel) at t = 1000 for the same 
simulation and subsection shown in Figure 6. 

Initially, (TS) = (T,S,) = 0. H owever, because of the nonlinear diffusion, (7’S) and (T,S,) both 
become positive so that the solid and dotted curves in Figure 8 approach each other. This 
process is weak for (TS) - the gap between the solid and dashed curves in the top panel of 
Figure 8 is merely reduced from its initial value. But for the gradients, the development of 
positive cross-correlations is so strong that the curves cross at around t = 0.3 in the lower 
panel of Figure 9. After this time RMS temperature and RMS salinity gradients are, on 
average, stronger than the RMS buoyancy gradient. The accentuation of positive correla- 
tion between temperature and salinity is evident in Figure 9 which shows the T - S and 
T, - S, scatter plots. In the gradient plane at t = 2 (see Fig. 9d) the thermohaline 
compensation is evident as an extension of the cloud of points along the ‘compensation 
line’ TX = S,. At the same time, there is a weaker, though nonzero, positive correlation in 
the T - S plane (see Fig. SC). 

The results discussed so far are for an initial condition in which salinity and temperature 
contributed equally to the buoyancy field (i.e., 01 = 0 in (4.13)). And, of course, (S*) = (T*) 
at all times as the fluctuations decay. 
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Figure 8. Time evolution of the RMS thermohaline fields (upper panel) and the RMS thermohaline 
gradients (lower panel). The simulations use N = 10,000 points. The asymptotic behavior is in 
good agreement with the power laws (4.10). 

We now turn to the evolution of initial conditions with (Y # 0. In the top panels of 
Figure 10 we show a case with (Y = %; i.e., two random initial fields with (T2) = 3/4 and 
(S2) = 1/4. The bottom panels of Figure 10 show the T - S and T, - S, diagrams at t = 2. 
These scatterplots are similar to those in the bottom panels of in Figure 9 (for which 
cx = 0). In both cases there is strong compensation between TX and S, and a weaker 
compensation between T and S. 

Scatter plots such as those in Figure 10d must be interpreted with a sensitive awareness 
of the distinction between ‘typical’ points and ‘extreme’ points. The gradient compensation 
in Figure 1 Od is nearly total for large thermohaline gradients; these are the extreme points 
which extend out along the compensation line, T, = S,. In order to quantify the degree of 
compensation of typical points we use the concept of a ‘best-fit ellipse’ to describe the 
tensor of inertia in thermohaline space; in particular, we use the ‘orientation,’ 8 of this 
ellipse as a diagnostic. The orientation of the best-fit ellipse in the thermohaline gradient 



19971 Ferrari & Young: Development ef thermohaline correlations 1089 

(4 (b) 

-1.2 -0.6 0 0.6 1.2 -2 -1 0 1 2 
Salinity Salinity gradient 

(cl t=2 
1.21-1 , 

(4 t=2 

E 2. / / 
g /’ 
lQ 1. -* 
6.J 

i i 

a, 5 o------ 
z 
z 
a-1 
s ./’ 
5. ,/’ 

( 
-2 -1 0 1 2 

Salinity gradient 

i . 

-1.21 J 
-1.2 -0.6 0 0.6 1.2 

Salinity 

7 

Figure 9. This figure shows the results of a simulation in which 1000 points in the (S, T) and (S,, TX) 
planes are created by picking uncorrelated temperature and salinity from a uniform probability 
density with variance %; thus the variance of B = T - S is one. Panels (a) and (b) show scatterplots 
at time t = 0. Panels (c) and (d) scatterplots at t = 2. 

plane is the angle 8 such that the new fields 

X = T, cos 0 - S, sin 8, Y = TX sin 8 + S, cos 8 (4.16a) 

are uncorrelated; explicitly 

(4.16b) 

The ambiguity in the branch of atan is resolved by ensuring that 0 < 8 < n. (For instance, 
in Fig. lob, 0 = n/2.) The major and minor axes of the best-fit ellipse are defined as the 
standard deviations of X and Y. We use an analogous procedure to calculate the orientation 
of the best-fit ellipse in the (S, T) plane. 

When (Y # 0, the major axis of the best-fit ellipse in the gradient plane does not coincide 

with the compensation line, i.e., 8 # IT/~. If (x > 0, then 8 > 1~14. For example, in 
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Figure IO. This figure shows the results of a simulation in which 1000 points in the (S, T) and (S,, TX) 
planes are created by picking uncorrelated temperature and salinity from a uniform probability 
density with a temperature variance of 3/4 and a salinity variance of I/q; thus the variance of B = T - 
S is one. These initial conditions correspond to 01 = % in (4.11). Panels (a) and (b) show 
scatterplots at t = 0. Panels (c) and (d) show scatterplots at t = 2. The oblique dashed line in panel 
(d) represents the direction of the major principal axes of the cloud of points: it is somewhat 
steeper than the compensation line (0 = v/4). 

Figure 1 Od the major axis of the best-fit ellipse (the oblique dashed line) is steeper than the 
compensation line. The detailed structure of the T, - S, diagram in Figure 10d can be better 
appreciated in the rotated and anisotropic coordinates h and j of Figure 11. The best fit 
ellipse (which does not fit very well) in Figure 11 has its major axis partially tilted with 
respect to the compensation line. (The anisotropic scaling of the coordinate axes in 
Figure 11 exaggerates the inclination of the ellipse axis to the compensation line.) 

To complete the statistical description we will use the correlation coefficients 

R(t) = (TS)Idm, C (t> = (TJx,l&%i (4.17a,b) 
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Figure Il. A detailed view of the S, - T, diagram of Figure 1Od. The axis have been rotated and 
scaled anisotropically. The best-fit ellipse is tilted with respect to the compensation line (which is 
the horizontal axis in this figure). The anisotropic scaling of the coordinates reveals the 
compensation between typical points in the middle of the cloud. 

as diagnostics. Figures 12 and 13 show the evolution of R(t) and C(t) and the orientation of 
the corresponding best-fit ellipse for four simulations with different values of (Y. In 
Figures 12a and 13a the correlation coefficients are initially very close to zero. For all four 
values of (Y there is a fast increase (notice that the time axis is logarithmic) followed by an 
approach to what might be limiting values as t - 00. However, the asymptotic behavior of 
C(t) as t - 00 is not so trivial; from Figure 12a there is a very slight increase in C(t) during 
the final decade lo* < t < 103. (This is more evident in the simulations with the larger 
values of o.) As time proceeds, the typical points collapse approaching a limiting value for 
both R(t) and C(t), while the extreme points (the spikes in spice gradient) sit on the 
compensation line without decaying. At large times the effect of the extreme points 
becomes important in the determination of the best fit ellipse. This effect happens first for 
larger values of OL, because these simulations reach the asymptotic regime at earlier times. 

Figures 12b and 13b show the evolution of the orientation, O(t), in the (S, T) and (S,, TX) 
planes respectively. When OL is nonzero and positive, e(O) = IT/~. Then, as t increases e(t) 
decreases and approaches a steady value which is a function of (Y. In the three cases with 
nonzero (Y in Figures 12b and 13b, the axis of the best fit ellipse is steeper than the 
compensation line (e.g., as in Fig. 10d). However, the rotation of the best-fit ellipse toward 
the compensation line indicates that there is density compensation developing amongst the 
typical points in the simulation. 
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Figure 12. (a) Evolution of the correlation coefficient R(t) defined in (4.17a). (b) Evolution of the 
orientation of the best-fit ellipse in the (S, T) plane. The initial conditions is 10,000 (S, T) points 
selected from uniform probability densities with variances (1 + 01)/2 and (1 - a)/2 respectively. 
For (Y = 0 the orientation is always close to n/4 except for an initial transient due to random 
asymmetries in the initial conditions. For 01 # 0, 0(O) = n/2; then as the time increases, e(t) 
decreases and approaches a steady value which is a function of (Y. If  (Y # 0, the orientation is 
steeper for the fields than for the gradients. 

Comparing Figure 12 with Figure 13, we see that all of the correlations are stronger for 
the gradients, (S,, TX), than for the fields, (S, T). (Notice the different vertical scales in 
Figs. 12a and 13a.) This happens because in the model, diffusion is proportional to the 
buoyancy gradient: buoyancy gradients are diffused everywhere (diffusion is weak only 
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Figure 13. (a) Evolution of the correlation coefficient C(t) defined in (4.17b) (b) Evolution of the 
orientation of the best-fit ellipse in the TX - S, plane. The initial condition is the same as that of 
Figure 12. 

where there are no such gradients) while buoyancy itself is diffused only where its gradient 
is large. 

e. A statistical theory of thermohaline correlations. In this section we develop a statistical 
theory of the thermohaline correlations discussed in the previous section. A complete 
statistical description of h(x, t) and j(x, t) is contained in a hierarchy of equations for all 
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moments of the two fields, whose evolution is governed by 

h, = (h3>,, .A = (h2j>,. (4.1 Sa,b) 

This hierarchy becomes much simpler if we assume that all our fields are homogeneous. 
Homogeneity means that the statistical properties of any function of the fields do not vary 
with absolute position. By choosing initial conditions with zero mean we can restrict our 
discussion to fields h andj with zero mean at all times; i.e., 

(h)=klhd.x=O, (j)=~~jd.x=O. (4.19a,b) 

The equations for the second moments (the two-point correlation functions) are written by 
introducing h = h(x + 5, t) and J = j(x + 6, t). Under the assumption that both fields are 
homogeneous, so that the correlation functions depend only on the space lag .$ and the time 
t, it follows from (4.18a,b) that 

(hi), = 2(h3&, 

(4.20a,b,c) 

These equations are not a closed set. In order to solve for the second-order moments we 
first have to solve a similar set of equations for the fourth-order moments, which in turn 
require the sixth-order moments and so on. 

A straightforward way to overcome the closure problem is to make a quasi-normality 

hypothesis as discussed in the text by McComb (1990). This hypothesis is used to close the 
moment hierarchy by expressing the quadruple moments on the RHS of (4.20) in terms of 
products of second moments. If we denote the quadruple correlation symbolically by 
(hlh2h3h4) then for a Gaussian field we have 

(4.21) 

The application of (4.21) to each of the fourth-order moments on the RHS of (4.20) gives a 
closed system of three equations for the second order correlation functions 

(hh”), = 6(h2)(h&, 
(hh = 4(h2)(h& + 2(hj)b& 
(dt = 2(h 2)(dtt + 4(hj)(h&~. 

(4.22a,b,c) 

In order to solve the (4.22) we need appropriate initial conditions. The random initial 
distributions considered in the previous sections correspond to S-function autocorrelations 
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for temperature and salinity and therefore initial 6” autocorrelations for h andj 

((hh”), (hj”), (.i)> = 31, 01, l>W3 when t = 0. (4.23) 

The equations above are a good approximation only if the relationship (4.21) is approxi- 
mately true. The additional terms that appear in the RHS of (4.22) for non-Gaussian fields 
are called “cumulants.” It is then more appropriate to refer to the closure approximation in 
(4.22) as the ‘cumulant discard approximation.’ 

A comparison of the size of the diffusion coefficients in Eqs. (4.22) enables us to 
anticipate some differences in the evolution of h versus that ofj. Let us consider first an 
initial condition with 01 = 0. The correlation function (hj”) remains zero at all times. The 
equations for (hh) and (j/) differ only because of the coefficient of the nonlinear diffusivity 
(h*): h t’ it is t ree imes bigger in (4.22a) than in (4.22~). The slower spreading of the spice 
gradient correlation function is a statistical indication of the spikes observed inj. 

The solution of (4.22) and (4.23) is 

(hh) = ’ 
12@ 

(hj”) = (y 
12&Z 

(4.24a,b,c) 

where T = (5tll 2J3,rr)2’5. The autocorrelation functions (hh) and (ji) in (4.24), derived from 
the cumulant discard approximation, pass an important consistency test; viz., the spectra 
(that is, the Fourier transforms of (4.24)) are positive definite. In the far more difficult 
problem of fully developed turbulence the cumulant discard approximation is obviously 
wrong because it results in autocorrelation functions with some negative coefficients in the 
Fourier transform. 

We can now integrate the gradient correlation functions in (4.24) to obtain the 
correlation functions of buoyancy B and spice Q 

(BB) = ’ ~ exp ( -c2/12r), 
JiG 

(Be) = (y 
@L 

exp (-5*/12r): 

(Q& = a2 
1 - (Y* 

- exp (-5*/12r) + 
Jizi 

~ exp ( - e2/4r), 
JG 

(4.25a,b,c) 

Figure 14 compares the correlation functions in (4.25) with simulation for (Y = 1/2; the 
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Figure 14. This figure shows the correlation functions of buoyancy B and spice Q. The dashed curves 
are the analytic expressions in (4.25) evaluated at t = 1040. The continuous curves are obtained by 
averaging the correlation functions obtained from 10 subsections of a simulation run with 10,000 
points and 01 = ‘/z at t = 103. 

agreement is satisfactory in all three cases. Figure 15 compares the gradient correlation 
functions in (4.24) with the same simulation. In the top two panels of Figure 15 there is 
reasonable agreement between theory and simulation (though not as good as that in 
Fig. 14). However in Figure 15c, which shows the autocorrelation function of the spice 
gradient, the results are less satisfactory. First, notice that the vertical scale of Figure 15c 
differs by a factor of 5 from that of Figures 14a and 14b. Thus, in both the theory and the 
simulation, the spice gradient autocorrelation is much larger than the buoyancy gradient. 
But the simulation shows a large ‘pointy peak’ in the (jj) correlation function at zero lag. 
The simulated (j’) correlation function is decaying more slowly than the theoretical 
estimate in (4.24~). The ‘pointy peak’ in Figure 15c is the signature of spikes in spice 
gradient. As time proceeds these spikes produce a progressive departure of the statistics ofj 
from the assumed Gaussian distribution. This is shown in Figure 16 where we plot the 
kurtosis of buoyancy, spice and their gradients. We define the kurtosis of a field& with zero 
average as ( f4)/3( f “) 2. F or a Gaussian distribution this ratio is identically one. The kurtosis 
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Figure 15. This figure shows the correlation functions of buoyancy gradient h and spice gradient j. 
The dashed curves are the analytic expressions in (4.24) evaluated at t = 1040. The continuous 
curves are obtained by averaging the correlation functions obtained from 10 subsections of a 
simulation run with 10,000 points and o( = % at t = 103. Notice the different vertical axis scales in 
the various panels. 

of j grows in time, because the spikes in j dominate the statistics of high order moments. 
For the same reason, the cumulants neglected in the RHS of (4.22~) grow and the cumulant 
discard approximation ceases to be valid. 

Now consider the correltaion functions R(t) and C(t) in (4.17). Using the solutions in 
(4.24) and (4.25) (evaluated at zero lag) we obtain the cumulant discard approximations 

R 
63 - 1 

CD = 

4 + 2&(1 + a2)/(1 - (x2)] ’ 

cCD = 

36-l 

28 + 6&[(1 + cx2)/(1 - a2)]. 

(4.26a,b) 
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Figure 16. Evolution of the kurtosis of buoyancy B, spice Q, buoyancy gradient h and spice gradient 
,j. The kurtoses of B and Q approach 1, showing that these two fields have a quasi-normal statistics 
as t - m. The kurtosis ofj increases indefinitely because extreme events (spikes) dominate the 
statistics as r- a. 

In Figure 17 we show a comparison between the approximations in (4.26) and the results of 
simulation. An encouraging aspect of the comparison is that the points from the simula- 
tions seem generally to follow the theoretical curve with a constant offset. Notice, however, 
that as t increases, the offset between theory and simulation in the bottom panel of Figure 
17 increases slowly but systematically; this growing discrepancy is related to the slight rise 
in C(t) which occurs in the final decade, lo2 < t < 103, of Figure 15a. Once again, this is 
the long term effect of the formation of spikes in the spice gradient. 

5. Discussion and conclusion 

The main result of this paper is that nonlinear diffusion parameterizations, which use the 
buoyancy gradient as the ‘driving field,’ produce strong density compensation between the 
thermal and haline components. One interesting aspect of this process in our model is that 
the compensation is stronger between the gradients, TX and S,, than between the fields T and 
S. This result can be used to test the model against oceanic mixed layer measurements. We 
expect that this gradient compensation is a general consequence of all nonlinear diffusion 
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Figure 17. A comparison between the analytic expressions in (4.26) (the continuous curves) and the 
results of numerical simulation at three different times. All of the simulations have 10,000 points. 
The agreement between simulation and analysis is consistently better in the upper panel than in the 
lower panel. In the lower panel, as time increases, the results of the simulation move systematically 
away from the analytic expression. Notice also the different vertical axis scales between the upper 
and lower panels. 

parameterizations in which the diffusivity increases with the horizontal buoyancy gradient. 
We also expect that the creation of small-scale structure in spice, or any passive 
combination of temperature and salinity, is in general property of this class of models. 

Our model uses vertically averaged thermohaline fields and thus it is most appropriately 
applied to shallow systems in which strong vertical mixing manages to arrest the 
restratihcation which is driven by isopycnal slumping; the ocean mixed layer is an 
example. The development of models for the three-dimensional problem, and the analysis 
of systems with continuously acting thermohaline forcing are both obvious directions for 
future research. 

The other aspect of our idealized model which should be emphasized is that in the initial 
condition both temperature and salinity fluctuations are created at the smallest resolved 
scale. On the other hand, in the mixed layer of the ocean, there is probably an interesting 
difference between the horizontal scales at which temperature and salinity variance are 
forced by meteorological inputs; it seems likely that salinity variance is forced by rainfall 
at smaller length-scale than temperature variance (e.g. Stommel, 1993). Models such as the 
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one formulated in this paper help us to think about the likely consequences of such 
statistical asymmetries. 

Acknowledgments. RF acknowledges support from the National Science Foundation under award 
number OCE95-29752. WRY acknowledges support from the National Science Foundation under 
award number OCE96-16017. We thank D. L. Rudnick for comments on this work. 

APPENDIX 

We look for asymptotic self-similar solutions of the equation for the spice gradientj(x, t) 

j, = th2jL (A.la) 

for a prescribed buoyancy gradient profile h(x, t) given by 

h = Cot-1/4(2/~)~~H(l - q2), q = uxlt’/4, (A.21 

where H(x) is the Heaviside step function and u = (IT~/~SC~)“~. We impose a constant 
concentration j(x, 0) = j, as initial condition. At the free boundaries the spice gradient is 
held constant j( 1x1 - ~0, t) = ja. We assume that at large times there is a self-similar 
solution j = j(q). In the interval 1-q 1 < 1 i.e., 1.x 1 < t 1’4/o, the equation for j, in terms of-q, is 
simply 

(1 - q21& - q j?- 2j = 0. tA.3) 

This equation has even solutions of the form 

jtrl) = J 
cash (& arcsin q) 

cash (n&) ’ 
(A.4) 

A plot of this function is given in the bottom panel of Figure 3 (in the present discussion 
y = 1). The constant J is the value of j at n = + 1. It can be determined using the fact that 
the integral of j over the interval - 1 < n < 1 is constant in time: it is twice the value of 
spice Q in -q = I, which is constant in time. The integral at time t = 0 is equal to 2j0 and 
yields J = 3j,. 
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