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a b s t r a c t

We present a physically and numerically motivated boundary-value problem for each vertical ocean col-
umn, whose solution yields a parameterized mesoscale eddy-induced transport streamfunction. The new
streamfunction is a nonlocal function of the properties of the fluid column. It is constructed to have a low
baroclinic mode vertical structure and to smoothly transition through regions of weak stratification such
as boundary layers or mode waters. It requires no matching conditions or regularization in unstratified
regions; it satisfies boundary conditions of zero transport at the ocean surface and bottom; and it pro-
vides a sink of available potential energy for each vertical seawater column, but not necessarily at each
location within the column. Numerical implementation of the methodology requires the solution of a
one-dimensional tridiagonal problem for each vertical column. To illustrate the approach, we present
an analytical example based on the nonlinear Eady problem and two numerical simulations.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Geostrophic eddies dominate the kinetic energy of the World
Ocean. These eddies stir and mix heat, salt, and other climatologi-
cally relevant tracers throughout the oceans. Ocean climate models
typically use grid sizes that are too coarse to explicitly resolve geo-
strophic eddies, and so eddy effects must be parameterized in such
models.

The parameterization of mesoscale eddies is often framed as the
parameterization of an eddy-induced transport streamfunction, W. A
commonly used parameterized streamfunction is that proposed by
Gent and McWilliams (1990) and Gent et al. (1995) (referred to as
‘‘GM” in the following), in which the streamfunction is given by
WGM ¼ �jS ^ ẑ; ð1Þ
where j is an eddy diffusivity, S ¼ �rzq=@zq is the slope of the
neutral direction relative to the horizontal (as discussed in Appen-
dix A.2, q is the locally referenced potential density and rz is the
horizontal gradient operator), and ẑ is the vertical unit vector. Tra-
cer fields are then advected by the velocity

vGM ¼ r^WGM; ð2Þ

in addition to the Eulerian velocity resolved by the model grid.

Various theories have been proposed to determine the eddy fluxes
and eddy diffusivity (e.g., Held and Larichev, 1996; Visbeck et al.,
1996; Smith and Vallis, 2002; Eden and Greatbatch, 2008), with
some suggesting that the fluxes should be a function of the verti-
cally integrated stratification or even a function of the three-
dimensional flow. However, even if the diffusivity has become a
nonlocal function of the vertical density structure, the streamfunc-
tion WGM has generally remained a local function of the neutral
slope at each point in the ocean in most current parameterizations.

Although the recipe of Eqs. (1) and (2) seems unambiguous, in
practice it can be difficult to compute the streamfunction in realis-
tic simulations admitting arbitrary vertical stratification and satis-
fying WGM ¼ 0 at the top and bottom boundaries. Methods used to
handle such issues are summarized in Griffies (2004), with these
methods typically requiring steps to smoothly match the stream-
function across boundary layers, as well as the imposition of a
somewhat arbitrary cap on the nominal value of the neutral slope
used to construct the streamfunction. These methods are straight-
forward mathematically, yet can be sensitive to numerical details,
and generally lack a sound physical justification. More recently,
however, Ferrari et al. (2008) provided a physical rationale for
transitioning the streamfunction, via the use of matching condi-
tions, from the stratified interior into weakly stratified boundary
layers at the ocean surface and bottom. Danabasoglu et al. (2008)
provide model examples where this approach greatly improves
the simulation as compared to alternative approaches. They report
a reduced sensitivity to interior tapering by allowing a large value
of the maximum slope and they provide a capability for handling
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boundary layer matching conditions without inordinate numerical
difficulties.

Motivated by theories for eddy fluxes that are nonlocal in the
vertical, we introduce a new parameterized eddy-induced stream-
function that is determined as the solution to a boundary-value
problem for each vertical ocean column. Through theoretical and
numerical analysis, we show how the new streamfunction is re-
lated to the GM-streamfunction WGM traditionally used in ocean
models, and how it naturally transitions through an arbitrary num-
ber of boundary layers, without the need to introduce matching
conditions or regularization. The approach is similar to that taken
in Ferrari et al. (2008), but it generalizes it to the full water column.
Additionally, we identify an important area where the new stream-
function differs from WGM. Namely, for a nonlinear Eady problem,
eddy fluxes from the new streamfunction match those from theory
and process simulations, whereas WGM is singular in the absence of
externally specified tapering or matching conditions.

The remainder of this paper consists of the following sections.
In Section 2, we review elements of the eddy parameterization
problem from the perspective of the tracer equation in a Bous-
sinesq fluid. This section serves to motivate the boundary value
problem proposed in Section 3. Section 4 examines the properties
of the boundary-value problem, and Section 5 considers some ana-
lytic and numerical examples. We close the main portion of the pa-
per with discussion and conclusions in Section 6. Appendices
discuss certain technical details.

2. Eddy-induced transport

As noted in the introduction, it is common to parameterize the
subgrid scale (SGS) stirring of tracers by mesoscale eddies through
a non-divergent eddy-induced velocity, which may be written as
the curl of a vector streamfunction, v� ¼ r ^W. Because the veloc-
ity v� ¼ ðu�;w�Þ is non-divergent, it has only two functional de-
grees of freedom and one may therefore choose a gauge to
represent the vector streamfunction, commonly chosen so that
the streamfunction has only horizontal components:

W ¼ ðWðxÞ;WðyÞ; 0Þ: ð3Þ

We find it convenient in much of this paper to write the vector
streamfunction corresponding to existing mesoscale parameteriza-
tions as

W ¼ ! ^ ẑ; ð4Þ

where ! is the parameterized eddy-induced transport. The eddy-in-
duced velocity is then given by

ðu�;w�Þ ¼ ð@z !;�r � !Þ: ð5Þ

Appendix A.2 summarizes the relation between the eddy-in-
duced transport, the eddy-induced vector streamfunction, and
the eddy-induced meridional overturning streamfunction.

2.1. Relating ! to eddy fluctuations

Relations between the parameterized eddy-induced transport !
and subgrid-scale fluctuations depend on how one chooses to parti-
tion the tracer and velocity into eddy and mean. Two methods are
commonly used, the Transformed Eulerian Mean (TEM) and Tempo-
ral Residual Mean (TRM). The TEM formalism has been used exten-
sively in the literature on quasi-geostrophic turbulence, and this
link will be used to motivate our choice for the vertical structure
of the eddy transport in Section 2.2. Although the two methods re-
turn different expressions for large amplitude eddies, the differ-
ences are second order for geostrophic eddies. We focus on the
TEM formalism here, and present elements of TRM in Appendix A.1.

The TEM formalism is based on averaging the equations in
ðx; y; zÞ coordinates. The expression for the transport resulting from
subgrid scale eddy motions is derived in Andrews and McIntyre
(1978), but it offers little insight for developing parameterizations.
Progress is made by assuming that the subgrid scale motions sat-
isfy the quasi-geostrophic (QG) approximation, and in the QG limit
the expression for the eddy induced transport reduces to

!TEM � hu
0q0i
j@zqj

; ð6Þ

where q0 is the fluctuating density, and the angle bracket is an aver-
aging operator taken at a fixed Eulerian depth (see, e.g., Plumb,
1990; Plumb and Ferrari, 2005; Ferreira and Marshall, 2006; Zhao
and Vallis, 2008; Ferrari et al., 2008).

2.2. Eddy fluxes and low baroclinic modes

The tendency of geostrophic turbulence is to transfer energy to
graver (larger) vertical scales (a process commonly known as baro-
tropization), as well as graver horizontal scales. This energy transfer
is a consequence of the analogy between quasi-geostrophic flow
and two-dimensional flow (Charney, 1971). Although barotropiza-
tion is inhibited in the presence of non-uniform stratification
(Smith and Vallis, 2001), numerical simulations indicate that even
with fairly realistic profiles of stratification, the quasi-geostrophic
potential vorticity flux is dominated by grave vertical scales. The
rationalization is that the potential vorticity flux hu0q0i is largely
the result of stirring of the low mode potential vorticity gradients
by barotropic velocity fluctuations u00. In fact the flux could be well
modelled by considering contributions from only the first baroclin-
ic mode (Smith and Vallis, 2002), and it is this result that largely
motivates our parameterization. Notice that we are not contending
that the quasi-geostrophic potential vorticity fluxes cannot be
dominated by high baroclinic structures; Smith and Vallis (2002)
show that one can contrive stratification profiles where this hap-
pens. Our contention is that for typical ocean stratification profiles,
the bulk of the quasi-geostrophic potential vorticity flux is cap-
tured by the first few baroclinic modes. Furthermore, on scales lar-
ger than the deformation radius but smaller than the planetary
scale, the quasi-geostrophic potential vorticity flux is dominated
by the thickness flux and so related to the density flux to a good
approximation by (e.g., Treguier et al., 1997; Vallis, 2006)

hu0q0i � f
@

@z
hu0q0i
@zq

¼ �f @z !TEM; ð7Þ

where f is the Coriolis parameter and the last step uses Eq. (6),
assuming a stable stratification where j@zqj ¼ �@zq. Given the low
mode structure of potential vorticity fluxes, relation (7) also means
that density fluxes have a low-mode vertical structure. We take this
phenomenology as motivation to construct our proposed boundary-
value problem so that low baroclinic modes dominate the parame-
terized eddy-transport.

A limitation of this approach is that the dominance of low baro-
clinic modes in the quasi-geostrophic potential vorticity flux has
been demonstrated in models that ignore surface fluxes of density.
The simulations of Smith and Vallis (2002), e.g., set the density to a
constant at the boundary. Recent results (e.g., Klein et al., 2008)
suggest that new modes are excited when density is not uniform
at the surface. But the problem is still poorly understood, and these
complications are left for a future study. Here the goal is to param-
eterize eddy mixing associated with low baroclinic modes associ-
ated with interior ocean dynamics.
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2.3. Surface and bottom boundary conditions for !

Homogeneous Dirichlet boundary conditions are employed for
parameterizations of the mesoscale eddy-induced transport !
(see Gent et al., 1995; McDougall and McIntosh, 2001), so that

!ðgÞ ¼ !ð�HÞ ¼ 0: ð8Þ

We list three elements of this boundary condition important for
mesoscale eddy closures.

– The boundary condition yields a vanishing vertical integral for
the horizontal component u� to the eddy-induced velocity, thus
ensuring that the mesoscale eddy transport has a zero barotrop-
ic component.

– The boundary condition further enforces a zero vertically inte-
grated flux of eddy potential vorticity as per Eq. (7), so that
the eddies act only to redistribute momentum within the
column.

– The TRM formalism (McDougall and McIntosh, 2001) and
Appendix A.1) shows that this boundary condition results from
kinematic constraints on flow approaching a geometric bound-
ary such as the ocean surface or bottom.

Although the boundary conditions (8) are of fundamental
importance, the parameterized eddy-induced transport from Gent
et al. (1995),

!GM ¼ �jS; ð9Þ

does not naturally vanish at the ocean surface or bottom, since nei-
ther the neutral slope nor the diffusivity necessarily vanish at these
boundaries. Consequently, various ‘‘tapering” methods have been
used to bring !GM to zero at the boundaries (e.g., Griffies, 2004).
This is typically done by tapering j so that it vanishes smoothly
at the boundaries. To maintain stability of the simulation, these
methods must also regularize !GM in regions of weak stratification
where N2 ! 0, often associated with boundary layers. It has been
found that somewhat arbitrary details of the regularization can pro-
duce widely varying simulation features (Gnanadesikan et al., 2007;
Ferrari et al., 2008; Farneti et al., in press), as might be expected
since the methods affect how the mesoscale closure interacts with
mixed layer processes.

It should be noted that as the surface is approached, diabatic ef-
fects become important because of air-sea interaction, and so a full
parameterization of eddy effects should not be purely advective
(e.g., Treguier et al., 1997). Non-advective effects may be included
by introducing a down-gradient horizontal diffusive flux of tracer
near the upper boundary, in addition to the eddy-induced trans-
port arising from eddy stirring. In our experience the introduction
of a horizontally aligned diffusive flux does not reduce the sensitiv-
ity of the simulation to the chosen tapering scheme used for the
parameterized eddy transport. For the rest of the paper we focus
on the parameterization of adiabatic stirring processes parameter-
ized by the eddy-induced transport.

3. A boundary-value problem for the transport

In this section, we propose a one-dimensional boundary-value
problem for the eddy-induced transport, to be solved on each ver-
tical ocean column, that satisfies the two key properties identified
above. That is, the new parameterized transport satisfies homoge-
neous Dirichlet boundary conditions at the ocean surface and bot-
tom, and its vertical structure is dominated by low baroclinic
modes.

3.1. An expansion in terms of baroclinic modes

We first consider the possibility of expanding the parameter-
ized transport in terms of ‘vertical velocity’ eigenmodes, SmðzÞ,
from the linearized primitive equations (see Appendix B for more
details). These eigenmodes satisfy the equation

c2
m

d2

dz2 þ N2

 !
Sm ¼ 0; ð10aÞ

Smð0Þ ¼ Smð�HÞ ¼ 0; ð10bÞ

and provide a complete basis for any piecewise continuous and
bounded function that vanishes at the boundaries, like ! (see Appen-
dix B for more discussion of the completeness of the baroclinic
modes). The squared buoyancy frequency is given by N2 ¼
�ðg=qoÞ@zq, where q is the locally referenced potential density,
and qo is a constant reference density associated with the Boussinesq
approximation. The parameterized transport may thus be written

! ¼
X1
m¼1

SmðzÞ!mðx; y; tÞ: ð11Þ

The expansion coefficients !mðx; y; tÞ are determined by the ortho-
normality condition maintained by Sm (see Eq. (58c) in Appendix
B), which leads to

! ¼ 1
g

X1
m¼1

SmðzÞ
Z 0

�H
dz0!N2 Sm

� �
: ð12Þ

We now specialize the expansion (12) by considering a modal
representation of the Gent et al. (1995) eddy-induced transport,
in which case

�N2!GM ¼ N2 jS ¼ ðg=qoÞjrzq; ð13Þ

using the expression (48c) (see Appendix A.2) for the neutral slope.
Inserting into the expansion (12) thus yields the modal representa-
tion of the GM parameterized eddy-induced transport

!GM ¼ � 1
qo

X1
m¼1

SmðzÞ
Z 0

�H
dz0jrzqSm

� �
: ð14Þ

If the eddy fluxes are indeed dominated by low baroclinic modes, as
argued in Section 2.2, we might attempt to approximate the expan-
sion (11) by a low-order truncation, the severest of which is

!GM � S1ðzÞ!1ðx; y; tÞ: ð15Þ

In addition, in such a scheme the diffusivity j must be depth inde-
pendent, because it parameterizes eddy stirring by the dominant
barotropic eddy velocity as discussed in Section 2.2. (Formally j
must be set equal to zero right at the boundaries, so that ! GM sat-
isfies the boundary conditions and can be projected on the Sm

modes. This introduces a very small correction in practice.) The
truncation (15) satisfies the required boundary conditions and, by
construction, has a low mode structure. We have explored this ap-
proach, as well as higher order truncations, in various simulations
(not shown), but found that it leads to a non-robust parameteriza-
tion. The main problem lies in columns that have extended regions
of low stratification, for which the series (14) converges very slowly.

3.2. The proposed boundary value problem

We now consider an alternative to the truncated modal expan-
sion discussed above. Here, we construct a boundary value prob-
lem to effectively low-pass the eddy transport to retain only the
lowest vertical modes. A similar approach was suggested by Sasaki
(1970) in the context of variational assimilation, and Jackson et al.
(2008) noted the utility of this approach for computing a diffusivity
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used to parameterize shear-driven turbulence. Most relevant to
our application, Killworth and Nurser (2006) proposed such a meth-
od to vertically smooth the parameterized mesoscale eddy transport
arising from Gent et al. (1995) and to provide for straightforward
satisfaction of the surface and bottom boundary conditions.

Our proposed one-dimensional boundary-value problem takes
the form

c2 d2

dz2 � N2

 !e! ¼ ðg=qoÞjrzq

e!ðgÞ ¼ e!ð�HÞ ¼ 0;

ð16a;bÞ

where c is a depth independent speed to be specified. The diffusivity
j is associated with the barotropic eddy stirring discussed by Smith
and Vallis (2001), and reviewed in Section 2.2. We therefore consider
this diffusivity to be depth independent from now on. (The absolute
value and horizontal variation of j may be chosen in a similar fash-
ion to that used in traditional GM implementations.) Correspond-
ingly, vertical structure to the parameterized transport e! arises
from the squared buoyancy frequency N2, and horizontal gradient
of the density rzq. Homogeneous solutions (arising from setting
the right hand side of Eq. (16) to zero) are exponential functions with
a length scale set by c=N. Yet to satisfy the boundary conditions
these functions must be set to zero. Thus, it is only the solution asso-
ciated with the right hand side forcing that contributes to e!.

The term on the right hand side of Eq. (16a) is related to the GM
transport by noting that N2!GM ¼ �ðg=qoÞjrzq. Thus, when
c ! 0, the parameterized transport e! reduces to !GM, except in
thin boundary layers where e! goes to zero while ! GM does not.
More generally however, e! has the desirable property of preferen-
tially weighting the low vertical modes (Section 4.1).

One might consider dropping the N2 term from Eq. (16a), in
which case the formulation would reduce to one proposed by Aiki
et al. (2004). Such a formulation would also enable boundary con-
ditions to be satisfied and would smooth the GM transport. How-
ever, information about the background stratification, and hence
about the mixed layer, would be lost. We thus do not consider this
formulation further in this paper.

As we will expand upon in the subsequent discussion, formula-
tion of the parameterization problem in terms of a boundary-value
problem has a number of desirable properties, as follows.

– The new parameterized eddy-induced transport e! reduces to
the GM transport !GM in the singular limit c2 ! 0. For the gen-
eral case of c2 > 0, the second order differential operator in Eq.
(16a) provides a means to satisfy the boundary conditions at
the ocean top and bottom, without tapering or matching
schemes required for !GM.

– The boundary-value problem provides a filter to high vertical
wave number structures (e.g., noise), as solutions preferentially
weight the low modes, consistent with the physical picture of a
transport with a grave vertical scale.

– The formulation interpolates through regions of vanishing strat-
ification. No artificial floor on the value of N2, nor ceiling on the
value of the neutral direction slope S, are required to regularize
the transport. However, one related condition must be applied
to the speed c, as discussed in Section 4.5.

– As for the Gent et al. (1995) scheme, as well as the class of
schemes introduced by Aiki et al. (2004), the new parameteriza-
tion provides a sign-definite sink for potential energy.

– Numerical implementation for the boundary-value problem
(16) requires the solution of a tridiagonal problem for each
vertical water column. Such problems are routinely handled
by ocean models, and introduce trivial computational
expense.

4. Properties and implementation

We now discuss properties of the parameterized eddy transport
that arise from the boundary-value problem (16), and discuss
numerical implementation choices.

4.1. Low pass modal filtering

Considering the special case of a rigid lid, we can express the
solution to the boundary-value problem (16) as an expansion in
terms of baroclinic modes

e! ¼X1
m¼1

SmðzÞe!mðx; y; tÞ; ð17Þ

with the expansion coefficients determined by

e!m ¼
!m

1þ ðc=cmÞ2
; ð18Þ

where !m are the expansion coefficients of the unfiltered eddy
transport as given in Eq. (14). The denominator 1þ ðc=cmÞ2 acts as
a quadratic low-pass filter, since the baroclinic gravity wave speeds
cm decrease as the mode number m increases (cmþ1 < cm). Hence, as
desired, low baroclinic mode structures are preferentially weighted.
We do note that our parameterization is not designed to capture
submesoscale or surface trapped phenomena that may not be well
represented by such baroclinic modes (Lapeyre, 2009).

4.2. Behaviour in weakly stratified regimes

So long as c2 > 0, e! will quadratically interpolate from a region
where N2 > 0 (e.g., ocean interior), through the region of N2 ¼ 0
(e.g., boundary layer). In particular, if N2 ¼ 0 in the surface mixed
layer, e! interpolates from its interior value to zero at the upper
ocean boundary. That is to say, the second-order differential oper-
ator allows for e! to smoothly transition between regions of vary-
ing buoyancy frequency. Note that if c2 ¼ 0 the parameterized
transport e! reduces to !GM, which has problems with satisfying
the boundary conditions, as discussed in Section 2.3.

The ability of e! to interpolate through various regimes of strat-
ification may be compared with the prescription of Ferrari et al.
(2008), whose key ingredients are the following.

(i) The eddy transport is linear in z within the surface mixed
layer where N2 � 0 and vanishes at the air-sea interface.

(ii) The eddy transport transitions from its linear z-profile in the
mixed layer to the interior GM profile (see Eq. (1)) through a
transition layer. The transition layer is required, because
eddy statistics transition smoothly from the mixed layer to
the interior. The same applies to the bottom mixed layer.

The parameterized transport e! arising from the boundary-value
problem satisfies these properties, since the transport e! vanishes
at the ocean boundaries by construction, and it interpolates
smoothly through weakly stratified mixed layers where N2 is small
and q is vertically homogeneous. Indeed, the scheme readily han-
dles multiple regimes of weak stratification and determines the
interpolation as a result of solving a one dimensional boundary-va-
lue problem, rather than by evaluating matching conditions based
on an assumed vertical profile.

The interpolation through layers of weak stratification is for-
mally quadratic in z (as follows from the solution of an equation
of the form c2d2 e!=dz2 ¼ constant), but if the layer is thinner than
the vertical scale of the first baroclinic mode (or the mode at which
the low-pass mode filter is active), then the solution of the bound-
ary-value problem is essentially linear in z within the layer. If the
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layer is very deep, the problem reduces to the spindown of a
weakly stratified water column and the boundary-value problem
is shown to perform very well in this case as well (see Section 5.1).
Note that there is no need to deal explicitly with any transition
layer that may exist beneath the mixed layer, because our low
mode projection naturally avoids any sharp discontinuity in e! at
the mixed layer base.

In addition to proposing the use of boundary layer matching
conditions at the ocean surface, Ferrari et al. (2008) propose
boundary matching also at the ocean bottom. Conventional ap-
proaches can lead to excessive noise in the parameterized trans-
port, arising from difficulties computing neutral slopes next to
boundaries (i.e., truncated grid stencils) and from the often weak
vertical stratification appearing in the deep ocean that leads to
steep neutral directions. As the boundary-value problem method
generally provides a smooth transition from the interior through
the weak stratification in the abyss, it resolves these problems with
the transport at the ocean bottom. We illustrate many of these ef-
fects in Section 5.4.

In boundary layers, especially the upper ocean mixed layer, the
squared buoyancy frequency can be negative, since vertical mixing
may incompletely stablize gravitationally unstable parcels. Be-
cause we are interested in parameterizing mesoscale eddy trans-
port arising from stably stratified ocean regions, we solve the
boundary-value problem (16) with N2 bounded from below, and
specifically with N2 > N2

0 > 0. Doing so ensures that potential en-
ergy is always dissipated by the scheme (Section 4.3). We choose
N2

0 ¼ 10�24 sec�2, which is close to numerical truncation levels.

4.3. Effects on potential energy

The GM parameterization provides a local sink of potential en-
ergy. We can verify this property by considering an adiabatic Bous-
sinesq system with a linear equation of state, in which the domain
integrated potential energy, P ¼ g

R
qzdV , evolves according to

@P
@t
¼ g

Z
dV

@q
@ t

z ¼ g
Z

dV !GM � rzq; ð19Þ

where we retain only the contribution to potential energy evolution
from GM, with other contributions including the vertical advection
of density by the mean circulation. The projection of the eddy-in-
duced transport onto the horizontal density gradient is given by

g !GM � rzq ¼ �ðqo=jÞ N !GM
�� ��2 6 0: ð20Þ

Hence, the GM scheme dissipates potential energy at each point in a
stratified fluid; that is, it is a local sink.

The new scheme affects potential energy evolution according to

@P
@t
¼ g

Z
dV e! � rzq: ð21Þ

Use of the differential Eq. (16) renders

ðgj=qoÞ e! � rzq ¼ � N2 e!��� ���2 þ c2 e!0��� ���2� �
þ c2 d

dz
e! � e!0� �

; ð22Þ

where primes are shorthand for a vertical derivative. Thus,

ðg=qoÞ
Z

dV j e! � rzq ¼ �
Z

dV N2 e!��� ���2 þ c2 e!0��� ���2� �
; ð23Þ

where the boundary conditions in Eq. (16b) allowed us to drop the
total derivative upon vertically integrating over a column, and we
recall that c2 is assumed to be depth independent. The right hand
side of Eq. (23) is negative semi-definite for all choices of the diffu-
sivity j P 0, which then proves

@P
@t
¼ g

Z
dV e! � rzq 6 0: ð24Þ

Hence, the parameterized transport e! arising from the boundary-
value problem (16) also dissipates potential energy for each col-
umn. However, contrary to the GM scheme, the new scheme might
not provide a potential energy sink at each grid point, since the total
derivative in Eq. (22) is not sign-definite. It is only by integrating
over a column that potential energy dissipation is ensured. This is
perfectly acceptable behaviour from a physical standpoint because
mesoscale eddies are not necessarily local sinks of potential energy,
as found by Wolfe et al. (2008) in eddy resolving simulations. Fur-
thermore, there are no numerical reasons to insist on local potential
energy dissipation.

4.4. Effects on potential vorticity

Eddies are often assumed to transport potential vorticity down-
gradient (e.g., Green, 1970; Rhines and Young, 1982), and we wish
to see if our parameterization respects this property. Plumb and
Ferrari (2005) show that the component of the potential vorticity
flux directed against the mean potential vorticity gradient is well
approximated by the horizontal quasi-geostrophic potential vortic-
ity flux. From this perspective, an eddy parameterization should
generate a quasi-geostrophic potential vorticity flux directed on
average against the mean horizontal potential vorticity gradient.
We now consider how the parameterized transport e! affects the
mean potential vorticity, and show under what assumptions it
achieves the above mixing of potential vorticity.

In the ocean, the large-scale potential vorticity gradient in the
horizontal is dominated by the stretching term (Smith, 2007) so
that

rzq � � fg
qo

@

@z
rzq
N2

� �
: ð25Þ

Now from (7) we have

hu0q0i � �f @z
e!; ð26Þ

and therefore

rzq � hu0q0i ¼ f 2g
qo

@

@z
rzq
N2

� �
� @z
e!: ð27Þ

Use of the boundary-value problem (16) to replace the horizontal
density gradient yields

f�2rzq � hu0q0i � c2 @

@z

e!0 � e!00
jN2

 !
� c2je!00j2

jN2 � e!0 � @@z
j�1 e!� �

:

ð28Þ

Consider first the special case with c ¼ 0; this is the GM case in
which e! ¼ !GM ¼ �jS for which (28) becomes

f�2rzq � hu0q0i � �@z j e!� �
� @z
e!: ð29Þ

The parameterized potential vorticity flux is then guaranteed to be
locally oriented down the mean potential vorticity gradient if the
diffusivity j is depth independent. This result is expected, for it is
known that the GM parameterization is equivalent to a thickness
transport if j is vertically uniform (Treguier et al., 1997; Vallis,
2006), and a thickness transport is like a potential vorticity trans-
port if the planetary and relative vorticities are small, as we have as-
sumed. However, a problem arises in the implementation of the GM
parameterization, because j must be set equal to zero at the bound-
aries to guarantee that !GM ¼ 0 there. This constraint then intro-
duces depth dependence to j, which means that the
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parameterized thickness flux is not down to the mean potential vor-
ticity gradient at the boundaries.

With c > 0, the first term on the right-hand side of Eq. (28) is
not sign definite. Hence, the parameterized potential vorticity flux
is not necessarily locally down-gradient. Vertical integration
rendersZ 0

�H
rzq � hu0q0idz ¼ c2f 2

jN2
e!0 � e!00� �0

�H
þN ; ð30Þ

where N is the vertical integral of the last two terms on right-hand
side of Eq. (28). With j depth-independent, N is negative-definite.
In the absence of horizontal density gradients at the boundaries, e! 00
vanishes at the boundaries, as can be seen by inspection of the
boundary-value problem (16) at z ¼ g;�H. In this case, the poten-
tial vorticity flux is downgradient in a vertically integrated sense.
However, in the presence of horizontal density gradients at the
boundaries, which is common at the ocean surface, the boundary
term on the right hand side of Eq. (30) is not sign definite and the
sign of the potential vorticity flux is indefinite. In the linear Eady
problem, discussed in Section 5.1, characterized by non-zero den-
sity gradients at the boundaries, the boundary terms on the right
hand side of Eq. (30) exactly cancel N . This cancellation arises since
the potential vorticity flux is zero for the linear Eady problem. Much
like in the GM formulation, our proposed boundary-value problem
does not guarantee that the potential vorticity flux is downgradient
in the more general case, neither locally nor in an integrated sense.

The presence of boundary terms on the right hand side of Eq.
(30) may be related to the surface solutions described, e.g., by Lap-
eyre et al. (2006). Horizontal density gradients at the ocean surface
support solutions other than the baroclinic eigenmodes SmðzÞ em-
ployed in this paper (see Appendix B). The eigenmodes SmðzÞ are
a complete basis for square-integrable functions over an ocean col-
umn. Yet surface density gradients, which may be regarded as a
delta-function contributions to potential vorticity in the quasi-geo-
strophic approximation, cannot be well represented by a finite
number of SmðzÞ modes: the second derivative e!00 must be non-
zero for buoyancy or potential vorticity fluxes to exist at the ocean
boundaries, but S00m ¼ 0 there. Thus, in the presence of surface den-
sity gradients, additional surface solutions should be considered to
properly represent the surface fluxes. We do not explore this pos-
sibility further in this paper, noting that the observational evidence
that the ocean kinetic energy is indeed trapped in low baroclinic
modes Wunsch (1997) suggests that surface solutions do not in
practice fundamentally alter our overall picture. Nevertheless,
the role of surface solutions in mixing of potential vorticity and
its implications for eddy parameterizations are certainly worthy
of future study.

4.5. Specifying the squared speed c2

Fully specifying the boundary-value problem (16) requires a
prescription for the squared speed c2 weighting the second order
differential operator. Given the dominance of low baroclinic mode
features in mesoscale eddies, a natural approach is to set c ¼ cM for
a low baroclinic mode M, such as c ¼ c1 the first baroclinic gravity
wave speed. This setting is further motivated by the example of the
Eady problem considered in Section 5.1. The boundary-value prob-
lem with c ¼ c1 low-passes the baroclinic coefficients in the expan-
sion of e! in Eq. (18) as

e!m ¼
!m

1þm2 ; ð31Þ

where we used the WKB expression for the baroclinic gravity wave
speeds given in Appendix B (see Eq. (60)). The filter thus acts on all

modes m > 1 and has a rolloff of m�2. We now consider some prac-
tical issues with regards to this recommendation.

4.5.1. Amplitude of the parameterized transport
The first consideration concerns the amplitude of the transporte! with c ¼ c1. From the expansion coefficients (31), ignoring all

higher order terms (which vanish if the vertical structure is first
baroclinic mode), the boundary-value problem transport is one-
half the size of the truncated transport !GM

truncate given by (15). This
reduced amplitude accounts for the reduced scale in the eddy-in-
duced overturning streamfunctions from the realistic numerical
simulations shown in Section 5.4 with c ¼ c1. This magnitude dif-
ference affects our ability to perform a direct comparison to exper-
iments run with !GM. One means to reduce the amplitude
difference is to set c ¼ cM , with M > 1. This choice still leads to a
dominance of the first baroclinic mode for determining the struc-
ture of the transport. Setting M ¼ 2, for example, leads to

e! ¼X1
m¼1

SmðzÞe!mðx; y; tÞ ¼
S1ðzÞ!1

1þ 1=4
þ
X1
m¼2

SmðzÞ!mðx; y; tÞ
1þ ðm=2Þ2

: ð32Þ

Furthermore, setting c ¼ cM with M > 1 does not necessarily admit
higher modes to e!, since the expansion functions !m will be non-
trivial only when jrz q has a nontrivial projection onto higher
modes. Hence, M > 1 is still consistent with low modes dominating
the transport, as suggested by Smith and Vallis (2002).

4.5.2. Setting a minimum for the speed
A second practical issue arises in the implementation of the

boundary-value problem with c set by a baroclinic gravity wave
speed c ¼ cM . In regions where the whole water column is weakly
stratified, the magnitude of the eddy transport e! can become very
large. Consider the limiting case with constant vertical stratifica-
tion so that N ¼ constant. The constant stratification case is consid-
ered by Eady (1949) and discussed in more detail in Section 5.1. In
this case with c ¼ cM , the boundary-value problem reduces to

N2 H2

M2p2

d2

dz2 � 1

 !e! ¼ ðg=qoÞjrzq; ð33Þ

where cM ¼ NH=ðMpÞwith a constant stratification (see Eq. (62d) in
Appendix B). If the right-hand side of Eq. (16) remains finite, then
the magnitude of e! grows without bound as N ! 0. Although it
may be possible to obviate this problem with a judicious choice of
the diffusivity j, a simpler recipe to keep the magnitude of e!
bounded in such regions is to set a minimum value for c

c ¼ max½cmin; cM �; ð34Þ
where cM is the chosen baroclinic gravity wave speed determined
for each water column, and cmin is a constant. A similar problem
arises in the implementation of the GM parameterization where
an upper bound of the isopycnal slope is often imposed to keep
the streamfunction bounded.

A related difficulty may also arise in the numerical solution of
(16). The differential equation gives rise to the length scale c=N,
and this length should be resolved by the model grid; that is, we
require Dz < c=N. Now, cm scales with the average value of N so
that if there are regions of high stratification overlying a deep
unstratified abyss then cM may be small in regions where N is large,
so that satisfaction of the above inequality may require a finer grid
than might otherwise be chosen. A solution again is to set a mini-
mum value of c, as in Eq. (34).

5. Examples of parameterized transport

We consider various examples that compare the streamfunction
computed using our proposed boundary-value problem (16) and
more conventional approaches using the GM scheme.
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5.1. A nonlinear Eady problem

The linear Eady problem is a classic example of the release of
potential energy through baroclinic instability and associated eddy
transport (Eady, 1949). Eady considered an adiabatic Boussinesq
fluid on an f-plane with constant depth H confined between two ri-
gid plates at z ¼ 0 and z ¼ �H. The prescribed basic state has a uni-
form vertical stratification (N2 ¼ constant) along with a constant
horizontal density gradient in thermal wind balance with a jet so
that

qo f @zu ¼ �g ẑ ^ rq ¼ constant: ð35Þ

This configuration is baroclinically unstable and leads to the spon-
taneous development of exponentially growing baroclinic eddies
that act to tilt the density surfaces towards the horizontal, releasing
available potential energy and resulting in an increase of vertical
stratification.

Fox-Kemper et al. (2008) studied the nonlinear spindown of the
basic state considered by Eady, but used a primitive equation mod-
el rather than the quasi-geostrophic system considered by Eady. As
soon as baroclinic instability develops, baroclinic fronts slump
from the vertical to the horizontal. The spindown is well described
by a constant transport of the form (see equation (20) in Fox-Kem-
per et al., 2008),

!Eady ¼ �Ce
ðH NÞ2

jf j

 !
SlðzÞ; ð36Þ

with Ce ¼ 0:06 and where

lðzÞ ¼ 1� 2z
H
þ 1

� �2
" #

1þ 5
21

2z
H
þ 1

� �2
" #

ð37Þ

is a dimensionless function of first baroclinic mode structure that
vanishes at the top z ¼ 0 and bottom z ¼ �H boundaries. Fox-Kem-
per et al. (2008) tested this scaling with a large suite of numerical
simulations to explore the full parameter space. We now investigate
how the eddy-induced transports from Gent et al. (1995) and the
new boundary value method compare to the scaling law (37).

When applied to the stratification for the nonlinear Eady prob-
lem, the GM parameterization gives a constant eddy transport
since the density slope is constant, !GM ¼ �jS. This transport re-
sults in zero horizontal eddy advection in the water column:
uGM ¼ �@z !GM ¼ 0. To satisfy the surface and bottom boundary
conditions, the transport must jump to zero at z ¼ 0 and z ¼ �H,
thus taking the form of a step function whose vertical derivative
yields delta-function jets at the boundaries. These spurious bound-
ary jets are absent in the analytic-numeric result (36), and meth-
ods to smoothly transition towards the boundary, such as Ferrari
et al. (2008), are only partially able to ameliorate this fundamen-
tally incorrect behaviour of the GM parameterization for the non-
linear Eady problem. A reviewer pointed out that our
characterization of the GM streamfunction is not unique. Stream-
functions are defined up to an arbitrary constant. For the Eady
problem the GM streamfunction is a constant and could be set to
zero to satisfy the top and bottom boundary conditions. With this
choice uGM ¼ 0 everywhere with no need of delta-function jets at
the boundaries. This solution, however, is physically unsatisfactory
in the following sense: the Eady front does slump from the vertical
to the horizontal during the nonlinear spindown, and this can only
be achieved with a non-zero eddy advection.

We may analytically solve the boundary-value problem in Eq.
(16) for constant density gradients in the vertical and horizontal,
and depth independent diffusivity j. In this case, the parameter-
ized transport takes the forme!Eady ¼ �jS ~l; ð38Þ

where ~l is a dimensionless structure function defined by Eq. (68) in
Appendix B.2. When the speed c for the boundary-value problem is
taken as the first baroclinic phase c ¼ NH=p for the Eady problem,
then the structure function takes the form

~lc1 ¼ 1� cosh ðp=2Þ 2z=H þ 1ð Þ½ �
coshðp=2Þ : ð39Þ

In this case, Fig. 1 shows there is a near exact agreement between
the boundary-value problem structure function (39) and the struc-
ture function (37) from Fox-Kemper et al. (2008). In contrast, the
step-like structure function from GM is qualitatively distinct. We
also show the structure function (68) for c ¼ c2 ¼ NH=2p and
c ¼ c4 ¼ NH=4p, each of which deviate from the Fox-Kemper et al.
(2008) structure function (37), further supporting the use of
c ¼ c1 for the boundary-value problem.

The agreement with the structure function from the numerical
solutions from Fox-Kemper et al. (2008) suggests that the bound-
ary-value problem approach is capturing the non-local behavior
of eddy fluxes in the vertical, and generates a sheared eddy trans-
port that restratifies the whole water column. Traditional GM ap-
proaches fail to produce restratification in the nonlinear Eady
problem. Whether similar differences carry over to more complex
flows remains to be explored.

Fox-Kemper et al. (2008) point out that the eddy fluxes of den-
sity can be split into two components with different effects on the
evolution of the Eady front. There is an advective component dom-
inated by low modes which drives the frontal slumping and restr-
atification. This is the component captured by the boundary-value
problem. In addition, there is a diffusive component that acts to
slightly spread the front laterally by mixing density in the horizon-
tal. This second component has little overall effect on the evolution
of the front, but it is associated with non-zero surface density fluc-
tuations. A careful exploration of these effects might shed light in
how to incorporate in the parameterization the effect of the surface
solutions alluded to in Section 4.4.
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Fig. 1. Eddy transport structure functions for the Eady problem, normalized by
their respective maximum values and shown over a normalized depth range. The
step-like function corresponds to the structure function for the GM scheme (with
speed c ¼ 0). The left-most dashed curve is actually two curves, with the structure
function (37) from Fox-Kemper et al. (2008) overlying the structure function (39)
from the boundary-value problem, where the boundary-value problem used a
speed c ¼ c1 ¼ NH=p corresponding to the first baroclinic phase speed for the Eady
problem. Two more curves are shown to the right of c ¼ c1 ¼ NH=p, corresponding
to the boundary-value problem structure function (68) (Appendix B.2) with lower
mode phase speeds c ¼ c2 ¼ NH=2p and c ¼ c4 ¼ NH=4p, thus illustrating that the
fit to the Fox-Kemper et al. (2008) structure function is best for c ¼ c1.
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5.2. Comments on the numerical simulations

For the two numerical examples presented in the remainder of
this section, we use the MOM4 code of Griffies (2009), where the
boundary-value problem method is compared to an implementa-
tion of the GM scheme in MOM4 of Gent and McWilliams (1990)
according to the skew flux formulation of Griffies (1998), denoted
GFDL-GM. For the GM approach, boundary layers are treated
according to Ferrari et al. (2008), with details given in Appendix
A.4. Alternative implementations, whose details may differ partic-
ularly in the boundary layers, will produce results that differ from
the GM MOM4 simulations presented here. Nonetheless, since
MOM4 has been used by numerous modellers, and its methods
the subject of various published papers (e.g., Griffies et al., 1998;
Griffies, 1998; Griffies et al., 2005; Gnanadesikan et al., 2007)
and technical guides, it serves as a benchmark for us to compare
the boundary-value problem approach proposed in this paper.

As a further caveat on the following results, we acknowledge
that the numerical simulations are meant to provide a flavour for
elements of the new boundary-value problem method. Extensive
further study, both with realistic global climate simulations and
idealized eddying models, is required to fully assess the merits of
the new approach.

5.3. Idealized numerical model configuration

We consider an idealized model ocean consisting of a flat-bottom
southern hemisphere sector-channel configuration, containing both
a re-entrant channel and a subtropical gyre, forced by wind and sur-
face density gradients. We choose the same geometry and forcing as
Zhao and Vallis (2008), though modify particulars of the parameter-
izations as follows. As in Ferrari et al. (2008), we impose an upper
ocean mixed layer by introducing large vertical tracer diffusivity
and frictional viscosity with values 10�3 m2 s�1 over the upper
180 m. Beneath this layer, the diffusivity is exponentially reduced
to 2� 10�5 m2 s�1 and viscosity is reduced to 2� 10�4 m2 s�1.

Fig. 2 shows the eddy-induced meridional overturning stream-
function (see Eq. (51) in Appendix A.2) computed using three dif-
ferent approaches, each time averaged over simulation years
901–1000. The left panel results from the more conventional
GFDL-GM MOM4 method. The middle panel shows the stream-
function resulting from solving the boundary-value problem (16)
at each model time step, with the speed weighting the second or-
der operator equal to the first baroclinic phase speed, c ¼ c1. We
also choose the minimum speed as cmin ¼ 0:1 m=s. The right panel
chooses cmin ¼ 1:0 m=s.

Of particular note in the two boundary-value problem simula-
tions is the absence of the higher mode structure found in the
GFDL-GM MOM4 method. The filtering of such higher mode struc-
ture was anticipated by the discussion in Section 4.5. There is,
however, some sensitivity to the choice of speed to weight the sec-
ond order operator. This sensitivity arises since a large fraction of
the southern region in the model domain is dominated by unstrat-
ified water all the way to the ocean bottom, in which case the baro-
clinic phase speeds approach zero. Such sensitivity is greater than
seen in the realistic case considered in Section 5.4. But as a test of
the fundamental numerical stability of the scheme, and overall
structure of the overturning circulation, we conclude that the
new scheme is indeed numerically stable (the simulations were
run for 1000 years with no sign of instability); and that it performs
in a manner consistent with the theoretical arguments presented
in Section 4.

5.4. Realistic global model configuration

Our second numerical example is from a global ocean–ice mod-
el using the Normal Year Forcing from Large and Yeager (2004),
and the experimental design and MOM4 configuration detailed in
Griffies et al. (2005, 2009). We integrate the model for one year,
starting from the temperature and salinity climatology of Steele
et al. (2001). The evolution from the initial state is small, so that
the simulation effectively provides a diagnosis for the streamfunc-
tions occurring when the density field closely corresponds to
climatology.

Fig. 3 shows the eddy-induced meridional overturning stream-
function (see Eq. (51) in Appendix A.2) arising from the more con-
ventional GFDL-GM MOM4 method, and various approaches to the
boundary value method. We show the eddy-induced meridional
overturning streamfunction only in the Southern Ocean, since val-
ues to the north are generally quite small.

Each method results in similar qualitative features, yet the mag-
nitudes differ especially for the case with c ¼ c1, which results
from the scaling discussed in Section 4.5. Use of the higher wave
speeds allows for more structure in the vertical, especially seen
in the northern region. As for the idealized test in Section 5.3, we
see how the boundary-value problem method acts to filter higher
mode structures. Additionally, sensitivity of the boundary-value
problem method to the minimum phase speed cmin is far less than
for the idealized configuration. The reduced sensitivity arises since
there are fewer regions in the realistic case that exhibit fully
unstratified water columns.

As anticipated in Section 4.2, examination of the streamfunction
reveals that the boundary-value method produces a smoother

Fig. 2. Eddy-induced meridional overturning streamfunction (Eq. (51)) derived from three different approaches in the southern hemisphere sector-channel configuration, as
time averaged over years 901–1000. Left panel: GFDL-GM MOM4 method (note that Zhao and Vallis (2008) integrate their simulations for 10,000 years, which explains the
distinction with the solution shown here and their Figure 4). Middle panel: boundary-value problem method defined by Eq. (16) using the specification (34) with c ¼ c1 (first
baroclinic phase speed) and cmin ¼ 0:1 m=s. Right panel: boundary-value problem method defined by Eq. (16) using the specification (34) with c ¼ c1 and cmin ¼ 1 m=s.
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result throughout the domain, especially in regions of steep neutral
slopes and near the bottom. We illustrate this feature in Fig. 4,
which shows the meridional eddy-induced transport at 60�E (In-
dian sector of Southern Ocean) for the case with c ¼ c1 and
cmin ¼ 0:1 m=s. The absence of a zonal integral (which can serve
as a smoothing operation) reveals the added (arguably spurious)
structure resulting from the GFDL-GM MOM4 method. The bound-

ary-value problem solution, in contrast, is significantly smoother,
reflecting the large-scale effects arising from the stratification in
the column, rather than exposing the streamfunction to the fine
scale details of the local stratification. Similar results are found
for the other streamfunctions (determined using different phase
speeds) resulting from the boundary value problem method. Such
a filtered parameterization of mesoscale eddy stirring near

Fig. 3. Eddy-induced meridional overturning streamfunction (Eq. (51)) in the Southern Ocean for the global ocean–ice configuration. The results are time averaged over the
first year of integration, starting from Steele et al. (2001). Note the different contour intervals for the negative versus positive streamfunction values. Top left panel: GFDL-GM
method. Top right panel: boundary-value problem method with c ¼ c3 (third baroclinic gravity wave speed) and cmin ¼ 0:1 m= s. Middle left panel: boundary-value problem
method with c ¼ c2 and cmin ¼ 1:0 m=s. Middle right panel: boundary-value problem method with c ¼ c2 and c min ¼ 0:1 m=s. Bottom left panel: boundary-value problem
method with c ¼ c1 and cmin ¼ 1 m=s. Bottom right panel: boundary-value problem method with c ¼ c1 and cmin ¼ 0:1 m=s.
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topography enhances our ability to cleanly examine other physical
processes, such as breaking gravity waves, active in the abyss.
However, in the absence of a clean comparison with eddy resolving
simulations, no definitive statement can be made as to which eddy
parameterization is objectively better.

6. Discussion and conclusions

Most current methods of computing the parameterized meso-
scale eddy-induced streamfunction in numerical ocean climate
models are based on the GM scheme (Gent and McWilliams,
1990; Gent et al., 1995). This scheme provides an eddy-induced
stirring of tracers via a parameterized streamfunction, with the
streamfunction parameterized with a local diffusive closure.
Although this method has been successful in model applications,
its implementation is not without difficulties. In particular, the
parameterized eddy-induced transport !GM ¼ �jS must be inter-
polated through regions of weak vertical stratification, where the
neutral slope S can become infinite, and, relatedly, some form of
tapering must be imposed to satisfy boundary conditions of zero
transport at the top and bottom of the ocean. In addition, the
scheme does not take advantage of the known phenomenology of
mesoscale eddies in evolving toward larger vertical scales.

In order to overcome these difficulties we propose that the
eddy-induced streamfunction may be computed as the solution
to a one-dimensional boundary-value problem, (16), over each col-
umn of ocean fluid. The boundary-value problem provides a verti-
cal filtering of the streamfunction that, in accord with earlier
theoretical and numerical investigations by Smith and Vallis
(2002), results in a transport streamfunction dominated by low
vertical modes. The scheme satisfies appropriate boundary condi-
tions at the top and bottom of the water column, and interpolates
through multiple weakly stratified regions.

We summarize our investigation by listing what we see as the
important attributes of the scheme.

(i) For the Eady problem, the eddy-induced streamfunction
arising from the boundary-value problem is nearly indistin-
guishable from the analytic-numeric results from Fox-Kem-
per et al. (2008), whereas the GM transport is qualitatively
distinct.

(ii) The boundary-value problem provides a low-pass filter with
solutions preferentially weighting the low baroclinic modes,
consistent with the phenomenology of geostrophic
turbulence.

(iii) As the boundary-value problem involves a second order dif-
ferential operator (see Eq. (16)), homogeneous Dirichlet
boundary conditions applied to the parameterized transport
at the ocean top and bottom are implemented without
tapering schemes.

(iv) The parameterized eddy transport interpolates through
regions of arbitrarily weak stratification, without a ceiling
on the value of the neutral slope S. However, in practice a
minimum value for the speed, c, must be set, and the choice
of c may be important in regions of uniformly weak stratifi-
cation, though realistic tests performed thus far show only
very weak sensitivity.

(v) As for the Gent et al. (1995) scheme, as well as the general-
ized schemes introduced by Aiki et al. (2004), the new
parameterization provides a sign-definite sink for potential
energy. However, the new scheme provides a non-local sink
in the vertical, which contrasts to the local sink of Gent et al.
(1995).

(vi) Numerical implementation of the boundary-value problem
(16) requires the solution of a tridiagonal problem for each
vertical column, with methods for such solutions straight-
forward and computational inexpensive.

We have performed some preliminary numerical tests of this
scheme, and compared it to an implementation of the GM scheme
in MOM4 with boundary layer treatment according to Ferrari et al.
(2008). We have not performed a detailed comparison, but our re-
sults suggest that the new scheme performs robustly, with no
numerical instabilities, and that the eddy fluxes are largely consis-
tent with the theoretical expectations listed above. Thus far, our
scheme performs as well as our implementation of the more con-
ventional GM scheme. Extensive further study is required to fully
assess the merits and limitations of the new approach. In particu-
lar, the utility of a parameterization that emphasizes just the low
modes need to be fully tested using both comprehensive global
models and eddying primitive equation simulations.
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Appendix A. Details of the fluxes and transport

The purpose of this appendix is to summarize salient points
regarding the eddy-induced streamfunction and transport, formu-
lation of the skew tracer fluxes, and implementation of the Ferrari
et al. (2008) scheme.

A.1. The TRM streamfunction

The TRM method (see, e.g., McDougall and McIntosh, 2001;
Nurser and Lee, 2004; Aiki et al., 2004; Eden et al., 2007; Aiki
and Richards, 2008) is based on averaging the equations in density
coordinates, i.e. using density as the vertical coordinate. The aver-
aged equations are then converted back to ðx; y; zÞ. To leading order
in fluctuation amplitude, the TRM transport (referred to as the qua-
si-Stokes transport by McDougall and McIntosh (2001)) is given by
the sum of two terms

!TRM � hu
0q0i
j@z ~qj þ

1
2
hðq0Þ2i@zhui
j@z ~qj2

; ð40Þ

where ~q is the modified mean potential density (see for details,
McDougall and McIntosh, 2001). The second term on the right hand
side of Eq. (40) is dropped in the quasi-geostrophic limit (Plumb,
1990), in which case the TRM and TEM expressions are the same.
By its definition, the unapproximated form of !TRM vanishes at the
top and bottom boundaries (McDougall and McIntosh, 2001)

!TRMðgÞ ¼ !TRMð�HÞ ¼ 0; ð41Þ

where z ¼ gðx; y; tÞ is the ocean free surface, and z ¼ �Hðx; yÞ is the
solid-earth lower boundary. As discussed in Section 2.3, this Dirich-
let boundary condition is employed by all parameterizations of the
eddy-induced transport.

A.2. eddy-induced streamfunction and transport

There are two equivalent methods to incorporate the effects of
SGS eddies parameterized by v� as given by Eq. (2). The first meth-
od stirs tracers via an additional advective transport, so that the
material evolution of tracer concentration in a coarse resolution
simulation is given by

dC
dt
¼ �r � ðv� CÞ � r � D; ð42Þ

with D parameterizing other SGS processes, such as diffusion. The
second method represents the stirring through skewsion using the
vector streamfunction W (Griffies, 1998; McDougall and McIntosh,
2001), so that

dC
dt
¼ r � ðrC ^ WÞ �r � D; ð43Þ

with

v� ¼ r ^ W: ð44Þ

The effects on the material evolution of tracer are the same whether
stirring with advective fluxes or skew fluxes, and we see the equiv-
alence by noting that the advective flux v� C and skew flux
�rC ^ W differ by a rotational flux that vanishes upon taking the
divergence

v� C ¼ �rC ^ Wþr ^ ðC WÞ: ð45Þ

Whether one chooses to represent SGS stirring via advection or
skewsion is a matter of convenience. What is fundamental is that
the parameterization of SGS tracer stirring reduces to a specification
of the streamfunction W. For convenience, we write

W ¼ ! ^ ẑ; ð46Þ

where ! is the parameterized eddy-induced transport.
The parameterized eddy-induced transport from Gent et al.

(1995)

!GM ¼ �jS; ð47Þ

requires computation of the neutral slope relative to the horizontal

S ¼ � rzq
@zq

� �
; ð48aÞ

¼ � qhrzhþ qSrzS
qh @zhþ qS @zS

� �
; ð48bÞ

¼ � rzB

N2

� �
; ð48cÞ

where rz is the horizontal gradient operator, q is the locally refer-
enced potential density, h is the potential temperature, S is the
salinity,

B ¼ �ðg=qoÞq ð49Þ

is the buoyancy,

N2 ¼ @zB ð50Þ

is the squared buoyancy frequency, and qh ¼ @q=@h and qS ¼ @q=@S.
The parameterized transport (47) reduces baroclinicity by flattening
slopes, with the tendency for flattening strengthened in regions of
steep neutral slopes.

The eddy-induced meridional volume transport (i.e., the eddy-
induced meridional overturning streamfunction) passing beneath
an arbitrary depth z, zonally integrated within a basin or over
the globe, is computed by the integral

TðyÞðy; z; tÞ ¼ �
Z

dx
Z z

�H
dz0 v� ¼ �

Z
dx!ðyÞðx; y; z; tÞ: ð51Þ

This transport is shown in Figs. 2 and 3 for the two numerical exam-
ples considered in the main text.

A.3. Skew tracer flux components

We follow the approach of Griffies (1998) by computing the ef-
fects on tracers from the parameterized eddy-induced transport
via skew diffusion, as defined by an anti-symmetric stirring tensor

A ¼
0 0 !ðxÞ

0 0 !ðyÞ

�!ðxÞ �!ðyÞ 0

0B@
1CA; ð52Þ

acting on the gradient of the tracer concentration rC. The corre-
sponding skew tracer flux is given by

F ¼ �A � rC; ð53Þ

which has the following horizontal and vertical components

FðhÞ ¼ �!@zC; ð54Þ
FðzÞ ¼ ! � rz C: ð55Þ

We typically consider eddy-induced skew fluxes in concert with
neutral diffusion, in which case the SGS transport tensor is the sum
of the anti-symmetric tensor A given by Eq. (52), and the symmet-
ric small slope neutral diffusion tensor
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K ¼ AI

1 0 SðxÞ

0 1 SðyÞ

SðxÞ SðyÞ S2

0B@
1CA; ð56Þ

where AI is the neutral diffusivity and S2 ¼ S � S.
Some of the motivation for Griffies (1998) to use skew fluxes

was to avoid problems associated with computing derivatives of
the often numerically noisy transport !GM ¼ �jS. The skew ap-
proach avoids such derivatives, and so provides a cleaner means
for producing physically based results from the GM parameteriza-
tion. However, given the more regular nature of e!, this motivation
to implement the closure via skew fluxes is largely obsolete. One
notable advantage of implementing the eddy closure as an advec-
tion operator is that one then may access from amongst the many
monotonic advection schemes commonly used for tracer advec-
tion, with this approach originally proposed by Weaver and Eby
(1997). In contrast, there is no analogous numerical scheme ensur-
ing monotonic skew fluxes.

A.4. Implementation of Ferrari et al. (2008)

The purpose of this section is to summarize our implementation
of the Ferrari et al. (2008) method used to transition the transport
!GM from the ocean interior through the surface boundary layer.
Note that we do not implement a transition from the interior to
the ocean bottom.

Our implementation simplifies the Ferrari et al. (2008) scheme
by ignoring the postulated quadratic transition layer sitting be-
tween the surface mixed layer and the ocean interior. Instead,
we transition directly from the base of the boundary layer to the
ocean surface, with a linear depth dependence given to the stream-
function. As discussed by Danabasoglu et al. (2008), there is little
sensitivity to the presence or absence of a transition region in real-
istic ocean configuration, so for purposes of this study, it is suffi-
cient to use a simplified version of the algorithm. However, the
transition layer stabilizes the algorithm and should be used in sim-
ulations where the surface mixed layer can become very shallow.

For determining the surface mixed layer depth for use in com-
puting the transition of the streamfunction, we take the sum of
the turbulent boundary layer determined by the upper ocean tur-
bulence scheme, plus the thickness over which mesoscale eddies
are thought to feel the base of the upper ocean turbulent mixed
layer. The algorithm for computing the mesoscale eddy depth is ta-
ken from the appendix to Large et al. (1997), with further descrip-
tion given in Section 15.3.3 of Griffies (2004) and in Ferrari et al.
(2008). For this calculation, we compute the product of the first
baroclinic Rossby radius and the neutral slope, k1 jSj. In the upper
ocean turbulent boundary layer, where the neutral slopes are gen-
erally steep, k1 jSj is large. Starting from the surface, we search for
the first depth D where D > k1 jSj. This depth then determines the
eddy depth.

Appendix B. Mathematical properties of baroclinic modes

This appendix summarizes some salient points regarding the
baroclinic modes in linearized flat bottom primitive equations.

B.1. Baroclinic modes

As discussed in Section 6.11 of Gill (1982) and Section 4.2 of
Philander (1990), the linearized, flat bottom, rigid lid, adiabatic,
hydrostatic primitive equations admit an infinite number of mutu-
ally orthogonal eigenmodes that satisfy the following relations.

Pressure and horizondal velocity modes:

d
dz

1
N2

dRm

dz

� �
þ 1

c2
m

Rm ¼ 0 ð57aÞ

d
dz

Rmð0Þ ¼
d
dz

Rmð�HÞ ¼ 0 ð57bÞZ 0

�H
dzRm ¼ 0 ð57cÞ

ðg=c2
mÞ
Z 0

�H
dzRm Rn ¼ dmn ð57dÞ

Rm ¼ hm
dSm

dz
ð57eÞ

c2
m ¼ ghm ð57fÞ

Rm ¼ constant if N ¼ 0 ð57gÞ

Vertical velocity modes:

d2Sm

dz2 þ
N
cm

� �2

Sm ¼ 0 ð58aÞ

Smð0Þ ¼ Smð�HÞ ¼ 0 ð58bÞ

g�1
Z 0

�H
dzN2 Sm Sn ¼ dmn ð58cÞ

N2Sm ¼ �g
dRm

dz
ð58dÞ

Sm ¼ 0 if N ¼ 0: ð58eÞ

As defined, both the horizontal velocity modes Rm and vertical
velocity modes Sm are dimensionless. We make use of the vertical
velocity modes Sm in Section 3, given the homogeneous Dirichlet
boundary conditions; the vertical modes Rm would be appropriate
for potential vorticity fluxes, and the two are related by
g dRm=dz ¼ �N2Sm. Note that normalization results in an ampli-
tude for Sm that is larger in regions of weak stratification where
N is small. However, when N ¼ 0 throughout the column, Sm

vanishes.
A general buoyancy frequency requires a numerical solver to

determine the eigenvalues and eigenmodes. However, as noted
by Chelton et al. (1998), the WKB method can be used to approxi-
mate the baroclinic modes. They focus on the vertical velocity
modes, in which case

Sm � S0
m sin

1
cm

Z z

�H
Nðz0Þdz0

� �
: ð59Þ

The vertical velocity baroclinic modes take the form of a stretched
sine function, with stretching and zero crossings determined by
the buoyancy frequency and wave speed cm, where the baroclinic
wave speeds are approximated by

cm � ðmpÞ�1
Z 0

�H
N dz: ð60Þ

In order to satisfy the normalization condition in Eq. (58e), the
dimensionless normalization constant S0

m must have an inverse
relation to the buoyancy frequency.

The WKB approximation for the horizontal velocity baroclinic
mode Rm is determined by the relation Rm ¼ �hm dSm=dz, so that

Rm � �
cm NðzÞS0

m

g

 !
cos

1
cm

Z z

�H
Nðz0Þ dz0

� �
: ð61Þ

The case of uniform stratification with constant N corresponds to
the Eady problem considered in Section 5.1. In this case, the nor-
malized baroclinic modes take the form
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N ¼ constant ð62aÞ

Sm ¼

ffiffiffiffiffiffiffiffiffiffi
2g

H N2

s
sin ðzþ HÞ N

cm

� �
ð62bÞ

Rm ¼ �

ffiffiffiffiffiffiffiffiffi
2c2

m

g H

s
cos ðzþ HÞ N

cm

� �
ð62cÞ

cm ¼
NH
mp

for m P 1: ð62dÞ

Notably, the buoyancy frequency appears in the denominator of the
vertical velocity baroclinic modes, which allows these modes to sat-
isfy the normalization condition in Eq. (58c).

B.2. Concerning completeness of the baroclinic modes

Within the quasi-geostrophic (QG) approximation, the dynam-
ics are described by the distribution of the QG potential vorticity
(PV)

q ¼ f0 þ byþr2/þ @

@z
f 2
0

N2

@/
@z

� �
� H < z < 0; ð63Þ

and the buoyancy at the top and bottom boundaries,

b ¼ f0
@/
@z

����
z¼0;�H

: ð64Þ

In these equations,r2 ¼ @2=@x2 þ @2=@y2 is the horizontal Laplacian
operator; �H 6 z 6 0 is a flat bottom ocean domain;
b ¼ �gðq� q0Þ=q0 is the buoyancy anomaly; q is the density; q0

is a reference density; / is the geostrophic streamfunction; f0 is
the Coriolis parameter at the latitude considered; and b is the plan-
etary vorticity gradient. Bretherton (1966) shows that the elliptic
problem for / with non-homogeneous boundary conditions in
Eqs. (63) and (64) is equivalent to the following elliptic problem
with homogeneous boundary conditions,

q� ðf0=NÞbsdðzÞ ¼ f0 þ byþr2/þ @

@z
f 2
0

N2

@/
@z

� �
ð65Þ

@z/ ¼ 0; z ¼ 0;�H; ð66Þ

where the delta function represents the effect of surface buoyancy.
The baroclinic modes Rm discussed in this appendix are a complete
basis for this problem, because they satisfy the same boundary con-
ditions over the ocean domain. Importantly, a basis is complete on
the space of functions that may contain a finite number of discon-
tinuities, but which are finite over the domain of interest. The func-
tions /; u;v ; b satisfy such properties, and thus can be expressed as
a linear combination of the baroclinic modes Rm and Sm. Hence, the
buoyancy flux, and the associated eddy transport, can be expanded
as a linear combination of Sm modes. However, PV is not such a
function because of the delta function contribution at the boundary.
The PV fluxes, thus, cannot generally be expanded in terms of the
baroclinic modes. The eddy-induced velocity is another variable
that cannot be expanded in baroclinic modes, because it depends
on vertical derivatives of the streamfunction and can in theory have
delta function contribution at the boundaries. High resolution
numerical simulations, however, do not seem to produce eddy
velocities with singular behavior at the boundaries.

Appendix C. Parameterized transport for the Eady problem

We present here the analytic solution to the boundary-value
problem (16) for constant density gradients in the vertical and hor-
izontal, and a depth independent diffusivity j. This density field
corresponds to the Eady problem discussed in Section 5.1. In this
case, the boundary-value problem is a linear second order inhomo-

geneous differential equation. Standard analytical methods lead to
the solution

e! ¼ �jS ~l; ð67Þ

where

sinhðH=kÞ ~lðzÞ ¼ 2e�H=2k sinhðz=kÞ sinhðH=2kÞ
� 2ez=2k sinhðH=kÞ sinhðz=2kÞ ð68Þ

defines a dimensionless structure function ~lðzÞ over a vertical col-
umn, and

k ¼ c=N; ð69Þ

defines a length scale over which the structure function transitions
from its maximum in the center of the column to its zero value at
the boundaries. The c! 0 limit corresponds to the Gent et al.
(1995) scheme, in which case the structure function becomes a step
function. Correspondingly, the parameterized eddy-induced veloc-
ity is a delta function at the top and bottom boundary when
c ¼ 0. In contrast, when c ¼ N H=p, which is the first baroclinic
phase speed when N ¼ constant, the transition length scale is

kc1 ¼ H=p; ð70Þ

which means the transition region extends well into the ocean
interior.
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