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Upper-ocean turbulence at scales smaller than the mesoscale is believed to exchange
surface and thermocline waters, which plays an important role in both physical and
biogeochemical budgets. But what energizes this submesoscale turbulence remains
a topic of debate. Two mechanisms have been proposed: mesoscale-driven surface
frontogenesis and baroclinic mixed-layer instabilities. The goal here is to understand
the differences between the dynamics of these two mechanisms, using a simple
quasi-geostrophic model. The essence of mesoscale-driven surface frontogenesis is
captured by the well-known surface quasi-geostrophic model, which describes the
sharpening of surface buoyancy gradients and the subsequent breakup in secondary
roll-up instabilities. We formulate a similarly archetypical Eady-like model of
submesoscale turbulence induced by mixed-layer instabilities. The model captures
the scale and structure of this baroclinic instability in the mixed layer. A wide
range of scales are energized through a turbulent inverse cascade of kinetic energy
that is fuelled by the submesoscale mixed-layer instability. Major differences to
mesoscale-driven surface frontogenesis are that mixed-layer instabilities energize the
entire depth of the mixed layer and produce larger vertical velocities. The distribution
of energy across scales and in the vertical produced by our simple model of
mixed-layer instabilities compares favourably to observations of energetic wintertime
submesoscale flows, suggesting that it captures the leading-order balanced dynamics of
these flows. The dynamics described here in an oceanographic context have potential
applications to other geophysical fluids with layers of different stratifications.
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1. Introduction
The upper ocean is host to energetic flows at scales smaller than the order 100 km

mesoscale eddies. Sharp surface fronts associated with strong along-front currents
are generated in high-resolution numerical simulations (e.g. Capet et al. 2008b;
Klein et al. 2008) and are observed in the wintertime midlatitude ocean (Shcherbina
et al. 2013; Callies et al. 2015). These submesoscale flows at scales 1–100 km are
associated with large vertical fluxes of both physical and biogeochemical tracers that
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have been argued to regulate the oceanic heat and carbon uptake in global warming
scenarios (Capet et al. 2008b; Klein & Lapeyre 2009; Ferrari 2011; Lévy et al. 2012;
Mahadevan 2014). Current global ocean models do not resolve submesoscale flows,
so these fluxes must be represented by parameterizations that should be based on
physical understanding.

Despite the attention received by submesoscale flows in both the theoretical and
observational oceanographic communities, the dynamics that generates them remains
a topic of debate. Two mechanisms have been proposed: mesoscale-driven surface
frontogenesis (Lapeyre & Klein 2006; Roullet et al. 2012) and baroclinic mixed-layer
instabilities (Boccaletti, Ferrari & Fox-Kemper 2007). It is important to understand the
differences between these two mechanisms, because they produce – as we shall see –
distinct submesoscale flow characteristics and vertical fluxes.

The essential physics of mesoscale-driven surface frontogenesis can be understood
with quasi-geostrophic (QG) dynamics (Stone 1966a). A mesoscale strain field
sharpens lateral buoyancy gradients at the surface more effectively than in the interior
of the ocean. An ageostrophic circulation develops in response to the increasing
lateral buoyancy gradient, as described by the omega equation (e.g. Hoskins, Draghici
& Davies 1978). In the interior, this circulation acts to weaken the lateral buoyancy
gradient: light water downwells on the dense side and dense water upwells on the
light side of the gradient. At the surface, however, the vertical velocity must vanish
and the ageostrophic circulation cannot counteract the increase in lateral buoyancy
gradient – the mesoscale strain field is left unopposed to create strong submesoscale
surface fronts.

Mixed-layer instabilities, on the other hand, can energize submesoscale flows
by releasing available potential energy stored in large- and mesoscale buoyancy
gradients in the surface mixed layer. The weak stratification in deep wintertime
mixed layers allows baroclinically unstable modes to rapidly amplify (Haine &
Marshall 1998). Much like deep mesoscale modes in the ocean interior (e.g. Gill,
Green & Simmons 1974), these mixed-layer modes slide dense water under light
water, but their horizontal scale is 1–10 km and they grow on time scales of order
1 day (Boccaletti et al. 2007).

The presence of a seasonal cycle in submesoscale turbulence suggests that baroclinic
mixed-layer instabilities are an important aspect of upper-ocean dynamics. Both
modelling (Mensa et al. 2013; Sasaki et al. 2014) and observations (Callies et al.
2015) show that submesoscale turbulence is energized in winter and suppressed in
summer. Mixed-layer instabilities are expected to undergo a strong seasonal cycle,
following the seasonal cycle of the mixed-layer depth and the associated mixed-layer
potential energy. Mesoscale-driven surface frontogenesis, on the other hand, is not
expected to vary seasonally, because mesoscale eddies do not undergo a strong
seasonal cycle (cf. Qiu 1999; Qiu & Chen 2004). A full understanding of how
submesoscale turbulence is energized by baroclinic mixed-layer instabilities, however,
is not as well established as that of mesoscale-driven surface frontogenesis.

The simplest model capturing the essence of mesoscale-driven surface frontogenesis
is the surface QG model (Blumen 1978; Held et al. 1995). It assumes an infinitely
deep ocean with constant stratification and vanishing interior QG potential vorticity
(PV),

q=∇2ψ + ∂

∂z

(
f 2

N2

∂ψ

∂z

)
= 0, (1.1)

where q is the PV, ψ is the geostrophic streamfunction, f is the (constant) Coriolis
frequency and N is the buoyancy frequency. The streamfunction is related to the
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horizontal flow by u = (−∂ψ/∂y, ∂ψ/∂x). The evolution of the flow is completely
determined by the lateral advection of buoyancy at the surface, which represents
the no-normal-flow boundary condition (i.e. the vertical advection of the background
stratification vanishes),

∂b
∂t
+ J(ψ, b)= 0, (1.2)

where b= f ∂ψ/∂z is buoyancy and

J(ψ, b)= ∂ψ
∂x
∂b
∂y
− ∂ψ
∂y
∂b
∂x

(1.3)

is the Jacobian operator. The surface buoyancy supplies the boundary condition for the
elliptic problem (1.1). Straining by mesoscale eddies creates sharp buoyancy gradients
associated with strong flows at the surface. Filamentary instabilities eventually lead to
fully-turbulent dynamics (Held et al. 1995). Kolmogorov-like dimensional arguments
(Kolmogorov 1941) predict that the fully-turbulent surface kinetic and potential
energy spectra scale like Kkh = Pkh ∼ kh

−5/3 in a submesoscale inertial range in which
surface potential energy b2/N2 is cascaded to small scales (Blumen 1978) – kh is
the horizontal wavenumber. This prediction implies that the gradients of velocity and
buoyancy (i.e. fronts), whose spectra scale like kh

2Kkh and kh
2Pkh , are stronger at small

submesoscales (large kh) than at large submesoscales (small kh). The forward cascade
of surface potential energy occurs in conjunction with an inverse cascade of surface
kinetic energy fed by the release of potential energy through slumping fronts (Capet
et al. 2008a). The submesoscale energy generated by surface QG turbulence is surface
trapped: modes decay exponentially in the vertical, with small-scale modes decaying
more rapidly than large-scale modes (e.g. Scott 2006). (Heuristic extensions of
surface QG ideas have been developed to infer interior flows from surface properties
(Lapeyre & Klein 2006). These extensions are diagnostic in nature and do not attempt
to describe the evolution of the flow or make predictions for submesoscale energy
levels. We therefore limit our discussion of surface QG dynamics to the case with
zero interior PV.)

If non-QG dynamics is taken into account, ageostrophic advection of buoyancy
further accelerates frontogenesis and potentially leads to frontal collapse, the formation
of true discontinuities in buoyancy (Hoskins & Bretherton 1972). In this case, the
submesoscale energy spectrum is modified to Ekh ∼ kh

−2 (Boyd 1992) and the decay
in the vertical direction becomes less rapid (Badin 2012). An additional modification
of the dynamics by non-QG effects is that the release of potential energy leads
to near-surface restratification (Hakim, Snyder & Muraki 2002; Lapeyre, Klein &
Hua 2006). This effect is neglected in QG dynamics, where stratification is fixed.
Non-QG surface frontogenesis also induces a finite forward flux of kinetic from
small submesoscales (order 1 km) to dissipation scales, which is not present in
QG dynamics (Capet et al. 2008b,c; Klein et al. 2008; Molemaker, McWilliams &
Capet 2010). Despite these omissions, surface QG turbulence predicts many of the
characteristics found in primitive equation simulations of mesoscale-driven surface
frontogenesis (e.g. Klein et al. 2008). Our working hypothesis is thus that surface
QG turbulence adequately captures the leading-order dynamics of the balanced flow
in mesoscale-driven surface frontogenesis.

The upper ocean does not have a nearly constant PV, however, contrary to what is
assumed in surface QG turbulence. Instead, a weakly-stratified mixed layer typically
overlies a strongly-stratified thermocline (figure 1). There is a sharp step-like increase
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FIGURE 1. Potential temperature section from the wintertime eastern subtropical North
Pacific. The data were obtained using a conductivity–temperature–depth sensor towed on
a sawtooth profile along 140◦W as part of the Spice experiment on 28 January–2 February,
1997. For more information on the data, see Ferrari & Rudnick (2000).

in stratification at the base of the mixed layer, corresponding to a step-like increase
in background PV. This PV jump is dynamically important, because it supports edge
waves that have the potential to interact with surface edge waves and thus produce
a baroclinic instability in the mixed layer (e.g. Haine & Marshall 1998). This linear
instability is to leading order captured by an Eady model with a rigid interface at the
base of the mixed layer (Eady 1949). Corrections due to ageostrophic effects and a
moveable interface at the mixed-layer base can be computed (Stone 1966b; Boccaletti
et al. 2007), but for typical wintertime conditions, the instability scale and growth
rate are qualitatively captured by Eady’s QG model. When baroclinic mixed-layer
instabilities grow to finite amplitude, turbulent scale interactions distribute energy
across scales. Because of the rotational constraint, they transfer energy preferentially
to larger scales. This nonlinear dynamics has been studied in idealized mixed-layer
models, where baroclinic mixed-layer instabilities grow on a prescribed front (e.g.
Boccaletti et al. 2007; Fox-Kemper, Ferrari & Hallberg 2008).

In the real ocean, baroclinic mixed-layer instabilities occur in the presence of
an energetic mesoscale eddy field, so mixed-layer modes can grow on mesoscale
buoyancy gradients and can be sheared by mesoscale strain fields. Realistic
submesoscale-permitting models capture this dynamics (e.g. Mensa et al. 2013;
Sasaki et al. 2014), but the models’ complexity makes it hard to distil the essence of
the dynamics and even these simulations only marginally resolve many submesoscale
phenomena. In this article, we explore submesoscale dynamics by formulating a
QG model that allows both mixed layer and thermocline instabilities. This simple
model of submesoscale turbulence energized by baroclinic mixed-layer instabilities
captures salient features of wintertime observations of submesoscale flows. If the
mixed layer in this model is eliminated, the submesoscale dynamics reverts to surface
QG turbulence, which allows a straightforward comparison of the two mechanisms
that can energize submesoscale turbulence.
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Mixed layer
h

H

Thermocline

FIGURE 2. Schematic of the model set-up in a vertical–horizontal plane. There are rigid
surfaces at z = 0 and z = −H and a deformable interface at the mean depth z = −h,
separating layers of constant stratification, Nm in the mixed layer and Nt in the
thermocline.

We use QG scaling to formulate the dynamics of the model, which requires small
Rossby and Froude numbers (e.g. Pedlosky 1987). Typical mesoscale Rossby and
Froude numbers are on the order 0.1 and increase slowly with wavenumber if the
submesoscales are energetic, reaching order 1 at scales of order 1 km (Callies et al.
2015). While the QG approximation does not apply anymore at these small scales,
the QG system can be expected to capture the leading-order dynamics over the
10–100 km range.

A major limitation of QG dynamics in representing mixed-layer instabilities is that
QG scaling does not allow for restratification. The weak mixed-layer stratification
will be fixed in our QG model, whereas in reality there is a competition between
restratification and atmospherically forced mixed-layer turbulence, which tends to keep
the mixed layer deep and unstratified. The assumption is that the slower balanced
dynamics described by the QG model develops on top of this background state,
which is maintained by fast small-scale turbulence. A full description of mixed-layer
dynamics will eventually need to consider the interplay of the fast and slow dynamics,
a topic we hope to address in a future study (cf. Hamlington et al. 2014). We take
up the discussion of how other non-QG effects may alter the dynamics toward the
end of the article.

As described above, our inquiry into the dynamics of a weakly-stratified mixed
layer coupled to a strongly-stratified thermocline is motivated by the study of the
submesoscale upper ocean. The model we present and the dynamics we describe,
however, have relevance for the atmosphere as well, where a weakly-stratified
troposphere is capped by a strongly-stratified stratosphere (e.g. Eady 1949). The
dynamics may also apply to the atmospheres of gas giants (e.g. Seiff et al. 1998) or
other geophysical fluids that have layers of different stratification.

We formulate the model and give some physical intuition for its behaviour in § 2.
In § 3, we investigate the linear dynamics of the model to understand its stability
properties. This linear dynamics is suggestive of the fully-nonlinear turbulent dynamics
that we address in § 4, where we analyse the energy spectra and fluxes for cases
with and without baroclinic mixed-layer instabilities. We compare the results to
observations in § 5 and conclude in § 6.

2. Model formulation
Consider two layers with constant stratification and constant mean shear on an f -

plane, so that each layer has constant PV (figure 2). The upper layer represents the
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mixed layer, which has a mean depth h, stratification Nm, and mean zonal shear Λm
that is in thermal wind balance with the mean meridional buoyancy gradient −fΛm.
The lower layer represents the thermocline and has stratification Nt and mean zonal
shear Λt that is in thermal wind balance with the mean meridional buoyancy gradient
−fΛt. The total depth is H. The layers are coupled through a deformable interface;
flat rigid boundaries are assumed at both the surface and the bottom. The presence of
a rigid bottom at the base of the thermocline is not realistic, but we will show that
the bottom layer still captures the key thermocline physics relevant to our study. A
weakly-stratified abyssal layer could be included but is omitted for simplicity, because
it does not significantly affect the surface submesoscale dynamics of interest here. The
approximation that the stratification is discontinuous at the base of the mixed layer
is appropriate at horizontal scales larger than the deformation radius Nd/f associated
with the transition depth d between the mixed layer and the thermocline (Smith &
Bernard 2013). The transition at the base of the mixed layer is typically quite sharp
(figure 1), so this deformation radius is much smaller than the submesoscales we are
interested in here.

The assumption of a uniform PV within the two layers greatly simplifies the
dynamics. PV conservation within the layers is trivial, as in the classic Eady (1949)
problem. The flow in the interior of the layers is obtained by solving (1.1), with
the boundary conditions supplied by the distribution of buoyancy at the surface and
bottom and by matching conditions at the interface between the mixed layer and the
thermocline.

In QG, the buoyancy anomaly b is governed by the horizontal advection of
buoyancy anomalies by the geostrophic flow and by the vertical advection of the
background buoyancy field,

∂b
∂t
+ J(ψ, b)+wN2 = 0. (2.1)

At the surface and bottom, where the vertical velocity w vanishes, buoyancy anomalies
are conserved under horizontal advection and (2.1) reduces to (1.2). To ensure that
pressure is continuous at the interface, we require that the streamfunction ψ is
continuous. Mass conservation requires that the vertical velocity w also is continuous.
These conditions are applied at z=−h, consistent with QG scaling. The conservation
equations for buoyancy just above the interface at z=−h,

∂b+

∂t
+ J(ψ1, b+)+wN2

m = 0, b+ = f
∂ψ

∂z
(−h+), (2.2)

and just below the interface,

∂b−

∂t
+ J(ψ1, b−)+wN2

t = 0, b− = f
∂ψ

∂z
(−h−), (2.3)

can then be combined to eliminate w, where ψ1 denotes the streamfunction at z=−h.
This gives a conservation law for the quantity

θ1 = f
(

b+

N2
m

− b−

N2
t

)
, (2.4)

which is simply advected by the horizontal flow at the interface,

∂θ1

∂t
+ J(ψ1, θ1)= 0. (2.5)
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It should be noted that this does not ensure that buoyancy is continuous at z = −h.
Instead, there is an implied interface displacement and buoyancy is continuous across
the displaced interface. The displacement is small and, consistent with QG scaling, the
matching conditions are applied at z=−h.

The quantity θ1 is nothing but the integrated PV associated with the interface
displacement, as can be verified by integrating

q=∇2ψ + f
∂

∂z

(
b

N2

)
(2.6)

across the interface. (The relative vorticity term vanishes because ψ is continuous
across the interface.) While there are no PV anomalies within the two layers, the
displacement of the interface between the layers induces a PV anomaly that, according
to (2.5) and consistent with QG dynamics, is advected by the geostrophic flow at
z=−h. The conservation equation (2.5) has been used to study the dynamics of the
tropopause, which is similarly an interface between the weakly stratified fluid in the
troposphere and the strongly stratified fluid in the stratosphere (Eady 1949; Rivest,
Davis & Farrell 1992; Juckes 1994; Held et al. 1995).

The two-layer model can equivalently be interpreted as consisting of three PV
sheets:

q= θ0δ(z)+ θ1δ(z+ h)+ θ2δ(z+H), (2.7)

where δ is Dirac’s delta function and θ0=−fb/N2
m at z= 0, θ2= fb/N2

t at z=−H and
θ1 at z=−h is given in (2.4). PV is advected by the geostrophic flow, so

∂θj

∂t
+ J(ψj, θj)= 0, (2.8)

where j = 0, 1, 2 and ψj is the streamfunction at the level corresponding to θj. This
formulation is simply an extension of Bretherton’s (1966) representation of boundary
conditions to include an interior PV sheet due to the deflection of an interface between
layers of different stratification.

Note that even though θ1 is only advected by the geostrophic flow, this does not
imply that w= 0 at the interface, much like the fact that interior PV anomalies in the
QG system are only advected by the geostrophic flow does not imply that w= 0. The
vertical velocity is implicit in the dynamics and can be solved for using the omega
equation (e.g. Hoskins et al. 1978).

To complete the dynamics, we require an inversion relation that allows us to obtain
the streamfunctions ψj from the conserved quantities θj. For simplicity, we consider
a doubly-periodic domain and express the inversion relation as a linear equation for
Fourier coefficients of the variables θj and ψj:

θ̂ = Lψ̂, θ = (θ0, θ1, θ2)
T, ψ = (ψ0, ψ1, ψ2)

T. (2.9a−c)

where Fourier transforms are denoted by carets. The matrix L, which depends on the
zonal and meridional wavenumbers k and l, is determined by solving

−kh
2ψ̂ + ∂

∂z

(
f 2

N2

∂ψ̂

∂z

)
= 0 (2.10)

in each layer, where kh = (k2 + l2)1/2 is the magnitude of the horizontal wavenumber
vector. The first column of L is determined by setting ψ̂ = (1, 0, 0)T, solving (2.10)
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Parameter Symbol Value

Mixed-layer depth h 100 m
Total depth H 500 m
Mixed-layer stratification Nm 2× 10−3 s−1

Thermocline stratification Nt 8× 10−3 s−1

Mixed-layer shear Λm 10−4 s−1

Thermocline shear Λt 10−4 s−1

Coriolis frequency f 10−4 s−1

Domain size a 500 km
Numerical resolution 1x ∼1 km

TABLE 1. Parameters used throughout this article unless otherwise noted. These are
typical of the wintertime midlatitude ocean.

for ψ̂(z) and subsequently calculating θ0, θ1 and θ2. Repeating for ψ̂ = (0, 1, 0)T and
ψ̂ = (0, 0, 1)T gives

L= f kh



−cothµm

Nm

cschµm

Nm
0

cschµm

Nm
−cothµm

Nm
− cothµt

Nt

cschµt

Nt

0
cschµt

Nt
−cothµt

Nt


, (2.11)

where µm=Nmkhh/f and µt =Ntkh(H− h)/f are non-dimensional wavenumbers. This
3× 3 matrix can easily be inverted.

This model can be generalized to an arbitrary number of layers of constant
stratification and shear, which may be a useful way to approximate more realistic
stratification and shear profiles. This is discussed in appendix A. The model can
also be extended to include a density jump at the interface, as is sometimes present
at the base of the mixed layer. The formulation is given in appendix B. Here we
consider only the case of a continuous density profile, which is simpler and captures
the essential physics of the submesoscale ocean.

To build intuition for the dynamics of the model, we illustrate the vertical structure
of the flow associated with anomalies of θj at the surface, the interface and the
bottom. Here and throughout the article, we use the parameters given in table 1,
which are typical of the wintertime midlatitude ocean. (The values listed imply a
mixed-layer Richardson number of N2

m/Λ
2
m = 400, which is larger than the order-1

Richardson numbers typically considered (e.g. Boccaletti et al. 2007). The relatively
large Richardson number is the result of a relatively weak shear, which is chosen such
that realistic energy levels are reached in the nonlinear simulations described below.
QG dynamics overestimates the baroclinic growth rate for small Richardson numbers
(Stone 1966b), which would result in unrealistically strong mixed-layer instabilities
if a larger shear was chosen. It should also be noted that the leading-order QG
dynamics can be rescaled to different Richardson numbers.) At the largest scales, for
θj anomalies with wavelength λ= 1000 km or kh� f /NtH, the flow is nearly depth
independent, irrespective of which level the anomaly is at (figure 3a). Around the
thermocline deformation radius, at λ=100 km or kh∼ f /NtH� f /Nmh, flow anomalies
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FIGURE 3. Vertical structure of streamfunction amplitude associated with anomalies of
θ0 (surface), θ1 (interface) and θ2 (bottom). Shown are the vertical profiles for θj anomalies
with different horizontal wavenumbers kh = 2π/λ. The wavelength λ is given in the
respective panel title: (a) 1000 km wavelength; (b) 100 km wavelength; (c) 10 km
wavelength; (d) 1 km wavelength.

significantly decay in the thermocline, while the flow is nearly uniform across
the mixed layer (figure 3b). Surface (θ0) and interface (θ1) anomalies still induce
significant flow at the bottom and vice versa. Around the mixed-layer deformation
radius, at λ= 10 km or kh∼ f /Nmh� f /NtH, surface (θ0) and interface (θ1) anomalies
induce very little flow at the bottom and vice versa (figure 3c). The flow now varies
significantly across the mixed layer, but surface anomalies (θ0) still induce significant
flow at the interface and vice versa. At λ = 1 km or kh � f /Nmh, all levels are
decoupled: θj anomalies on any one of the levels induce very little flow at the other
levels (figure 3d).

The dependence of the vertical flow structure on the horizontal scale of the
anomalies illuminates the qualitative dynamics of the model. At the largest scales, the
flow is essentially depth independent and follows two-dimensional dynamics. At scales
kh∼ f /NtH, around the thermocline deformation radius, surface or interface anomalies
can interact with bottom anomalies, allowing phase locking and a thermocline
instability. At scales kh ∼ f /Nmh, around the mixed-layer deformation radius, surface
and interface anomalies can interact, enabling an instability in the mixed layer. Bottom
anomalies, on the other hand, are decoupled, so there is no thermocline instability
at these scales. At the smallest scales, all three levels are independent and follow
surface QG dynamics.

3. Linear stability analysis
We now analyse the linear stability of the model formulated above. This linear

analysis reveals the nature of the instabilities that fuel the nonlinear turbulence, which
we describe in the next section.

Blumen (1979) analysed short-wave instabilities in the atmosphere using a model
consisting of two coupled constant-PV layers. He performed a linear stability analysis
equivalent to what will be presented here. For completeness, we repeat the analysis in
the context of upper ocean dynamics to emphasize the aspects most relevant for the
nonlinear regime.

We consider the linear stability of normal-mode perturbations to a zonal flow with
constant vertical shear Λm in the mixed layer and Λt in the thermocline (figure 4).
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FIGURE 4. Mean buoyancy structure in the meridional–vertical plane for (a) the full
model and (b) the thermocline-only model. The contours show isopycnals; light shading
indicates more buoyant fluid.

The linearized conservation equation for the perturbations from this mean state, written
in Fourier space, is

∂ θ̂

∂t
+ ikU θ̂ + ikΓ ψ̂ = 0, (3.1)

where the mean zonal flows and mean meridional PV gradients at the respective levels
are represented by the diagonal elements of the matrices U and Γ :

U = diag(0,−Λmh,−Λmh−Λt(H − h)), (3.2)
Γ = diag(f 2Λm/N2

m,−f 2Λm/N2
m + f 2Λt/N2

t ,−f 2Λt/N2
t ). (3.3)

The system is Galilean invariant, so we are free to set the mean zonal flow to zero
at the surface. Using the inversion relation (2.9a), we can replace the ψ̂ and obtain
an equation for the θ̂ coefficients only,

∂ θ̂

∂t
+ ikU θ̂ + ikΓ L−1θ̂ = 0. (3.4)

Substituting θ̂ = θ̃e−iωt, with complex frequency ω, turns this equation for θ̂ into the
eigenvalue problem

(U + Γ L−1)θ̃ = cθ̃ , (3.5)

where the eigenvalue is c = ω/k. The real part of c is the zonal phase speed; the
imaginary part gives the growth rate σ = k Imc.

Being a third-order system, (3.5) can be solved analytically, but the solutions are
rather complicated and give little useful insight. We instead explore the characteristics
of the solutions numerically for the set of parameters given in table 1. We then explain
the stability properties and parameter dependencies by considering special limit cases.
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FIGURE 5. Linear stability analysis of the model equations. (a) Growth rates and
(d) phase speeds of the full model, (b) growth rates and (e) phase speeds of the
thermocline-only model, (c) growth rates and (f ) phase speeds of the mixed-layer-only
model. Growth rates and phase speeds are shown in blue; the growth rates and phase
speeds of the full model are overlaid for reference in grey. The phase speed of a surface
edge wave is given in faint red in (f ).

3.1. Full model
We start by considering the growth rate σ as a function of horizontal wavenumber.
The eigenvalue problem (3.5) only depends on kh= (k2+ l2)1/2, so the eigenvalue c is a
function of kh only. For a given kh, the maximum growth rate σ = k Imc hence occurs
at l= 0. We therefore only consider disturbances with no meridional dependence.

Plotting the growth rate σ as a function of zonal wavenumber k reveals that there
are two lobes of instability: one at the mesoscale and one at the submesoscale
(figure 5a, branches ‘b’ and ‘e’). The maximum growth rates occur at zonal
wavelengths of approximately 160 km (mesoscale) and 9 km (submesoscale). The
two lobes can overlap, for example if the mixed layer is deeper or if a density jump
at the base of the mixed layer is included (not shown). The submesoscale instability
has a peak growth rate much larger than the mesoscale instability. The growth rates
are similar to what Boccaletti et al. (2007) found in a linear QG stability analysis
of a realistic mean state of the wintertime eastern subtropical North Pacific. The
magnitudes are slightly smaller here, because the shear is slightly weaker. But the
similarity of the instabilities supports that this model, despite being highly idealized,
captures the essential physics of mesoscale and submesoscale instabilities. Whether
it also captures the essential physics in the nonlinear regime will be discussed in
§§ 4–6.

The mesoscale and submesoscale instabilities have very different vertical structures,
as also noted by Boccaletti et al. (2007). The perturbation streamfunctions – derived
from the eigenvectors of (3.5) – show that the fastest-growing mesoscale mode is
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and (b) submesoscale (9 km) modes of the full model. Red and blue shading represents
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deep and spans the entire water column (figure 6a), whereas the fastest-growing
submesoscale mode is almost completely confined to the mixed layer, with only weak
penetration into the thermocline below 100 m depth (figure 6b). Both modes exhibit
the familiar pattern of baroclinically unstable modes with streamfunction perturbations
tilted into the shear, as is necessary to extract potential energy from the mean flow.

Further insight into the dynamics of the model can be gained by considering
the propagation speeds of the linear modes in conjunction with their growth rates
(figure 5a,d). Being a third-order system, the model has three normal modes at
each wavenumber. In both lobes of instability, the growing modes are conjugate
to decaying modes, which have the same phase speeds. This is the familiar phase
locking of counter-propagating waves in baroclinic instability (branches ‘b’ and ‘e’).
In these unstable wavenumber ranges, there is an additional neutral mode (branches
‘a’ and ‘d’). At wavenumbers with no instability, all three modes have distinct phase
speeds – no phase locking occurs. We will discuss the dynamics of the various
branches by considering approximations to the full model.

3.2. Thermocline only
We start by examining the deep mesoscale instability of the full model. As discussed
in the model formulation (§ 2), the mesoscale modes are deep and only slightly
modified by the presence of the mixed layer. We can understand the mesoscale
instability by eliminating the mixed layer altogether and considering a thermocline-
only model (figure 4b). This amounts to setting h = 0 (or Nm = Nt and Λm = Λt)
in the full model. In this limit, the model reduces to one layer with the dynamics
controlled by buoyancy advection at the surface and bottom only – the classic Eady
(1949) model. The inversion matrix (2.11) reduces to

L= f kh

−
cothµt

Nt

cschµt

Nt

cschµt

Nt
−cothµt

Nt

 , (3.6)
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and the matrices representing the mean flow are

U = diag(0,−ΛtH), (3.7)
Γ = diag(f 2Λt/N2

t ,−f 2Λt/N2
t ). (3.8)

Solving the eigenvalue problem (3.5) with these matrices, we find the eigenvalues

c=−ΛtH
2
± iΛtH

µm

(
µt cothµt − 1− µ

2
t

4

)1/2

, (3.9)

where µt =NtkhH/f is the non-dimensional wavenumber (Eady 1949).
The solution (3.9) shows that this thermocline-only model has a baroclinic

instability near the thermocline deformation radius NtH/f . The maximum growth rate
σ = 0.31fΛt/Nt occurs at µt= 1.6 and l= 0, which corresponds to a zonal wavelength
λ = 3.9NtH/f . The growth curve for this thermocline-only model approximates the
mesoscale lobe of the full model very well (figure 5b). The short-wave cutoff in
the Eady model at λ = 2.6NtH/f nearly coincides with the short-wave cutoff of the
mesoscale instability in the full model. The phase speed of the phase-locked waves
−ΛtH/2 very nearly matches the phase speed of the unstable mesoscale mode of
the full model (figure 5e). The split at the short-wave cutoff into surface and bottom
modes also features in the full model. In the thermocline-only model, these surface
and bottom modes are very nearly Eady edge waves that do not sense the other
boundary. The bottom mode of the thermocline-only model very nearly matches
that of the full model (branch ‘d’). The surface mode of the thermocline-only model
traces out branch ‘c’ of the full model, but then the full model transitions to dynamics
associated with the mixed layer that are not present in the thermocline-only model.

This comparison shows that the mesoscale instability of the full model very
nearly follows Eady dynamics. The presence of the mixed layer only modifies the
characteristics of the instability slightly. At submesoscales, on the other hand, the
thermocline-only model has surface QG dynamics, as opposed to the mixed-layer
dynamics of the full model.

3.3. Mixed layer only
Turning our attention to the submesoscale instability, we note that the submesoscale
instability peaks around the deformation radius of the mixed layer Nmh/f . Based
on the discussion in the model formulation (§ 2) and the vertical structure of this
instability (figure 6b), we anticipate that this instability arises from the interaction
between anomalies at the surface and at the interface between mixed layer and
thermocline.

In a first attempt to isolate the submesoscale instability, we disregard the possibility
that surface and interface anomalies induce flow in the thermocline and assume a
rigid bottom at the base of the mixed layer. This reduces the full model to an Eady
model for the mixed layer, which is the limit of infinite thermocline stratification. This
Eady model reasonably approximates the location and magnitude of the peak growth
rate with λ = 3.9Nmh/f = 8 km and σ = 0.31fΛm/Nm = 0.13 d−1. The Eady model
captures the short-wave cutoff of the full model, but misses the long-wave cutoff. This
suggests that the fastest-growing mode approximately follows Eady dynamics as if the
thermocline acted like a rigid bottom, but also that larger-scale modes are significantly
modified by reaching into the thermocline.
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All features of the submesoscale instability are captured if flow in the thermocline
is allowed. To still isolate the submesoscale instability, we consider again the layered
model but let the thermocline be infinitely deep. That eliminates bottom edge
waves, so no mesoscale instability occurs. Eady (1949) considered the upside-down
atmospheric analogue to this system, relaxing the assumption that a rigid lid is placed
at the tropopause.

Our system with no bottom again reduces to two variables; the inversion matrix is

L= f kh

−
cothµm

Nm

cschµm

Nm

cschµm

Nm
−cothµm

Nm
− 1

Nt

 (3.10)

and the mean flow is represented by

U = diag(0,−Λmh), (3.11)
Γ = diag(f 2Λm/N2

m,−f 2Λm/N2
m + f 2Λt/N2

t ). (3.12)

In the case Λ=Λm =Λt, the solution to the eigenvalue problem (3.5) is

c=−Λh
2

(
1+ α

µm

)
± iΛh
µm

[
(1− α2)(µm − tanhµm)

tanhµm + α − 1
4
(µm − α)2

]1/2

, (3.13)

where α = Nm/Nt (Eady 1949; Blumen 1979). This converges to the classic Eady
solution if α� 1 and α�µm, which is equivalent to Nt�Nm and kh� f /Nth. This
shows that large thermocline stratification acts like a rigid bottom, but only for scales
that are not too large, as alluded to above. Modes of large horizontal scale penetrate
into the thermocline and their dynamics is altered.

The growth rates and phase speeds of this reduced model very nearly match the
growth rates and phase speeds of the full model at scales smaller than about 100 km
(figure 5c,f ). This model now captures the long-wave cutoff of the submesoscale
instability. At large scales, where µm � α and µm � 1 or equivalently kh � f /Nth
and kh � f /Nmh, the dynamics split into modes that are barotropic and baroclinic
in the mixed layer. The barotropic mode behaves like a surface edge wave, which
has a phase speed −fΛ/Ntkh and does not sense the mixed layer (figure 5f ). The
baroclinic mode is baroclinic in the mixed layer and remains shallow for large scales –
its critical level is the base of the mixed layer and its phase speed is −Λh. The vastly
different phase speeds of these two modes prevent phase locking, so no instability
occurs at large scales. This stabilization is analogous to that by the β-effect (Phillips
1954; Lindzen 1994; Vallis 2006). Note that no tilt in the interface is required for
this long-wave cutoff (cf. Boccaletti et al. 2007). For the unstable modes, the reduced
model with no bottom also captures the deepening of the critical level as the scale
increases, −Λh(1 + f /Ntkhh)/2, which is due to the increasing penetration of the
unstable mode into the thermocline.

The location of the long-wave cutoff in this constant-shear case depends on the ratio
Nm/Nt. In the more general case Λm 6= Λt, it also depends on the ratio Λm/Λt. No
long-wave cutoff occurs if Λt = 0, as found by Rivest et al. (1992), who considered
the atmospheric case with no shear in the stratosphere. There is also no long-wave
cutoff if Nm/Nt→ 0, which is the Eady limit. The instability itself requires a reversal
of the PV gradient, so the condition for instability is Λm/N2

m >Λt/N2
t . This condition

is typically satisfied in the ocean, because the thermocline stratification is much larger
than the mixed-layer stratification and horizontal buoyancy gradients are typically of
the same order in the mixed layer as in the thermocline, if not larger.
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3.4. Summary
We are now in a position to understand all branches in the phase speed diagram of
the full model. Branch ‘a’ is a mode that is baroclinic in the mixed layer and does
not penetrate much into the thermocline. It does not sense the bottom. Branch ‘b1’ is
the unstable branch corresponding to the Eady-like thermocline instability; branch ‘b2’
is the conjugate decaying branch. Branch ‘c’ is a mode that is nearly barotropic in
the mixed layer and behaves like a surface edge wave in the thermocline. It does not
interact much with the bottom. Branch ‘d’ is a bottom edge wave that is independent
of the surface and interface. Branch ‘e1’ is the unstable branch corresponding to the
mixed-layer instability; branch ‘e2’ is the conjugate decaying branch. The instability
is significantly modified by the modes’ penetration into the thermocline, but the scale
and growth rate of the most unstable mode still scale with the mixed-layer deformation
radius and the Eady growth rate. Branches ‘f’ and ‘g’ are edge waves propagating on
the surface and the interface that do not interact with any of the other edge waves.

4. Nonlinear dynamics
We now turn to the nonlinear dynamics that arises when perturbations are amplified

by the instabilities and grow to finite amplitude. We solve numerically the full
nonlinear equations

∂θ

∂t
+ U

∂θ

∂x
+ Γ ∂ψ

∂x
+ J(ψ, θ)= r∇−2θ − ν(−∇2)nθ , (4.1)

where the Jacobian operator is understood to act element-wise:

J(ψ, θ)= (J(ψ0, θ0), J(ψ1, θ1), J(ψ2, θ2))
T. (4.2)

These are the evolution equations for perturbations from the prescribed mean zonal
flow, which appears in form of the diagonal matrices U and Γ . We consider flows
that are doubly periodic in the perturbations, so no modification of the prescribed
mean can occur. We introduce hypoviscosity with coefficient r, which provides a
drag to remove energy from large scales, and hyperviscosity with coefficient ν and
order n, which helps ensure numerical stability and absorbs enstrophy at small scales.
Hypoviscosity is a convenient but somewhat unphysical choice. We introduce it to
halt the inverse cascade and allow for mesoscale equilibration. Hypoviscosity appears
in the dynamical equations for the conserved quantities at the surface, interface
and bottom, but it can be thought of as acting throughout the layers. If applied to
buoyancy and momentum, it does not affect PV and PV conservation within the
layers remains trivial. Linear drag cannot prevent an inverse cascade to the domain
scale without significantly damping the instabilities.

We integrate these equations on a 500 km × 500 km domain using a fully
dealiased pseudo-spectral code with a resolution 512× 512. The time derivatives are
discretized using a fourth-order Runge–Kutta scheme. The hypoviscosity coefficient
is r = 10−16 m−2 s−1; the hyperviscosity is of order n = 10 and the coefficient is
ν = 2.5 × 1046 m20 s−1. All calculations are initialized with white noise of small
amplitude in θj.

Before considering the combined effect of mesoscale and mixed-layer instabilities,
we first consider them separately. We start with the thermocline-only model, which
allows only the mesoscale thermocline instability while submesoscale flows follow
surface QG dynamics. We subsequently contrast this case with the mixed-layer-only
model, which allows only the submesoscale mixed-layer instability. We finally
consider the full model, in which both instabilities occur.
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4.1. Thermocline only
We start by studying surface QG turbulence generated by mesoscale eddies, one
of the proposed mechanisms to energize submesoscale flows. Surface QG flows
cannot themselves extract energy from the mean flow, so they must be forced at
the mesoscale. Instead of prescribing external forcing (e.g. Pierrehumbert, Held &
Swanson 1994; Scott 2006), we use the thermocline-only Eady model to generate
mesoscale eddies that in turn generate the submesoscale flows. As we saw in the
linear stability analysis, the dynamics of surface buoyancy anomalies in this model
decouple from the bottom at scales smaller than the thermocline deformation radius,
so flows very nearly follow surface QG dynamics at the submesoscales, i.e. the
scales smaller than the thermocline deformation radius. The mesoscale instability is
an obviously crude representation of the real mesoscale instability, with no interior
PV gradients and the presence of an artificial rigid interface at the base of the
thermocline. But the instability does generate mesoscale eddies of roughly the right
scale, which is sufficient to drive the submesoscale surface QG flows (cf. Roullet
et al. 2012).

Since the dissipative terms are weak in the linear regime, the instability grows
until it reaches finite amplitude, when the nonlinear terms become important.
Secondary instabilities set in and the flow quickly evolves into a fully turbulent
regime. The perturbations grow in scale until they reach a scale where hypoviscosity
is significant. Thereby, the flow comes into statistical equilibrium, which is the time
period considered in what follows.

A snapshot from the equilibrated state exhibits a patchy surface buoyancy field with
strong buoyancy gradients (figure 7b). The largest eddies are about 200 km in scale.
The strongest coherent vortices have a scale of about 50 km. Smaller-scale vortices
are present, but are weaker the smaller the scale. They result from a roll-up instability
that features prominently in the evolution of the flow (Held et al. 1995).

As typical for turbulent flows, a continuum of scales is energized. This is quantified
by the kinetic and potential energy spectra in statistical equilibrium, 〈Kk,l〉 and 〈Pk,l〉,
which are defined by

Kk,l = 1
2
(|û|2 + |v̂|2), Pk,l = 1

2
|b̂|2
N2
. (4.3a,b)

The angle brackets denote an average in time, performed over the statistical
equilibrium, and u and v denote the leading-order zonal and meridional geostrophic
velocity components. Isotropic spectra 〈Kkh〉 and 〈Pkh〉 are computed by averaging
〈Kk,l〉 and 〈Pk,l〉 over circles of constant kh in wavenumber space – the statistics are
very nearly isotropic.

The surface spectra of both kinetic and potential energy peak at a wavelength of
approximately 200 km and fall off roughly like 〈Kkh〉 ∼ 〈Pkh〉 ∼ kh

−5/3 (figure 8), as
predicted by surface QG turbulence theory for scales smaller than the scales at which
mesoscale instabilities inject energy into the system (Blumen 1978). Since small-scale
modes decay more rapidly in the vertical than large-scale modes, the spectra are
steeper in the interior (e.g. Scott 2006). At 100 m depth, the mesoscale energy levels
are similar to those at the surface, but submesoscale energy levels are much lower.

A useful diagnostic of turbulent dynamics is the spectral energy budget (e.g.
Larichev & Held 1995; Roullet et al. 2012). While the dynamics is completely
determined by the advection of conserved quantities at the surface and bottom, we
first consider the energy budget over the entire depth range. We will take into account
the reduced nature of these models below, where we present a vertically integrated
energy budget for the mixed-layer-only case.
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FIGURE 7. Snapshots of surface buoyancy (mean plus anomalies) from the equilibrated
states of the (a) the full model, (b) the thermocline-only model, and (c) the mixed-layer-
only model. The colour scale extends from white (more buoyant) through blue to black
(less buoyant) and extends between ±fΛa.

The equations for the spectral perturbation potential and kinetic energies are

∂Pk,l

∂t
=Re

[
fΛ
N2
v̂∗b̂− ŵ∗b̂− 1

N2
b̂∗Ĵ(ψ, b)

]
− (rkh

−2 + νkh
2n)Pk,l (4.4)

∂Kk,l

∂t
=Re

[
−f

∂

∂z
(ŵ∗ψ̂)+ ŵ∗b̂+ ψ̂∗Ĵ(ψ,∇2ψ)

]
− (rkh

−2 + νkh
2n)Kk,l, (4.5)

where the asterisks denote complex conjugates and Re denotes taking the real part.
The Fourier transforms in the square bracket are all understood to be evaluated at
the wavenumbers k and l. The first term on the right-hand side of the potential
energy equation represents the extraction of potential energy from the mean flow. The
second term represents the conversion from potential to kinetic energy. This term
appears as a source term in the kinetic energy budget. The third term in the potential
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FIGURE 8. Wavenumber spectra of kinetic and potential energy from the thermocline-only
simulation. (a) Kinetic and (b) potential energy spectra at the surface and 100 m depth,
spectral density of (c) kinetic and (d) potential energy in the wavenumber–depth plane. In
(c,d), no values below 10−3 m3 s−2 are shown. Reference lines with slopes −3 and −5/3
are shown in grey.

energy budget represents spectral transfer by triadic interactions. The sum of this term
over all wavenumbers vanishes. An equivalent spectral transfer term appears in the
kinetic energy budget (third term). Kinetic energy can also be distributed vertically by
pressure fluxes, represented by the first term in the kinetic energy budget. The vertical
integral of this term vanishes. The viscosity terms act as sinks for both potential and
kinetic energy – hypoviscosity acting at large scales, hyperviscosity at small scales.
We present these budgets averaged azimuthally in wavenumber space and over time.

The extraction of potential energy from the mean is dominated by the largest, most
energetic eddies (figure 9a). The extraction is independent of depth, because q= 0 and
therefore

0=Rev̂∗q̂=Re
∂

∂z

(
f

N2
v̂∗b̂
)
, (4.6)

where it was used that the term involving advection of relative vorticity vanishes.
Potential energy is transferred downscale by triadic interactions and deposited near
the deformation radius as well as in wedges near the surface and the bottom that
reach to much smaller scales (figure 9b). Where potential energy is deposited by
scale interactions, it is converted into kinetic energy (figure 9c). Near the mesoscale
deformation radius, this conversion is due to the mesoscale instability that produces
vertical buoyancy fluxes. In the wedges near the surface and bottom, the conversion
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FIGURE 9. Spectral energy budget for the thermocline-only simulation. The terms are
(a) potential energy extraction from the mean, (b) spectral potential energy flux divergence,
(c) potential to kinetic energy conversion, (d) kinetic energy flux divergence, including
spectral flux and pressure flux, (e) hypoviscosity on both kinetic and potential energy, and
(f ) hyperviscosity on both kinetic and potential energy. All terms are multiplied by the
wavenumber to compensate for logarithmic shrinking.

is due to frontogenesis and secondary instabilities present in the surface QG cascades,
which occur independently at the surface and the bottom (Roullet et al. 2012). The
kinetic energy thus created is transferred back to large scales (figure 9d). The bulk
of the energy is dissipated through hypoviscosity at the scales of the largest, most
energetic, eddies (figure 9e). The energy dissipation through hyperviscosity is small,
which reflects the fundamental property of geostrophic turbulence that energy is
trapped at large scales and viscous energy dissipation vanishes in the limit of infinite
resolution and zero (hyper-)viscosity (Kraichnan 1967; Charney 1971).

4.2. Mixed layer only
We now turn our attention to the nonlinear dynamics of the submesoscale mixed-layer
instability and compare its turbulent dynamics to the surface QG turbulence of the
thermocline-only case. We study the case with an infinitely deep thermocline, which
allows an accurate representation of the submesoscale instability, while eliminating the
thermocline instability (figure 5c,f ).

The submesoscale instability grows to finite amplitude and the flow becomes
turbulent. There is a turbulent spin-up phase, in which the eddies, which are initially
of the size of the instability, grow larger until they reach a statistical equilibrium
with hypoviscosity. The flow is host of numerous coherent vortices embedded in a
filamentary sea with strong buoyancy gradients (figure 7c). A snapshot of surface
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FIGURE 10. Wavenumber spectra of kinetic and potential energy from the mixed-layer-
only simulation. (a) Kinetic and (b) potential energy spectra at the surface and 100 m
depth (just below mixed-layer base), spectral density of (c) kinetic and (d) potential
energy in the wavenumber–depth plane. In (c,d), no values below 10−3 m3 s−2 are shown.
Reference lines with slopes −3 and −5/3 are shown in grey.

buoyancy appears quite different from the thermocline-only case, but this visual
difference is due mostly to the smaller size of the most energetic eddies.

The energy spectra reflect the nearly frontal structure at the surface (figure 10). The
kinetic energy spectra fall off slightly more steeply than 〈Kkh〉 ∼ kh

−5/3 in the scale
range of the linear instability and like 〈Kkh〉 ∼ kh

−5/3 at scales smaller than the linear
short-wave cutoff, both at the surface and at the base of the mixed layer at 100 m
depth (figure 10a). The mixed-layer instabilities energize the entire depth of the mixed
layer. This is in sharp contrast to the thermocline-only simulation, in which surface
QG turbulence energizes a thin wedge close to the surface only.

The equilibrated flow in the mixed-layer-only case is much more energetic than in
the thermocline-only case and more energetic than is realistic. While the equilibration
by hypoviscosity is unrealistic, we will see that the enhanced energy levels are due to
more efficient extraction of mean potential energy in the weakly-stratified mixed layer,
which is a dynamical property of the system that does not depend on how the flow
is equilibrated. We will discuss possible reasons for these unrealistically high energy
levels in § 5.

Below the base of the mixed layer, the potential energy spectra are the same
as the kinetic energy spectra (figure 10c). In the mixed layer, the potential energy
spectra are significantly flatter than the kinetic energy spectra. This is in contrast
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FIGURE 11. Spectral energy budget for the mixed-layer-only simulation. The terms are
(a) potential energy extraction from the mean, (b) spectral potential energy flux divergence,
(c) potential to kinetic energy conversion, (d) kinetic energy flux divergence, including
spectral flux and pressure flux, (e) hypoviscosity on both kinetic and potential energy and
(f ) hyperviscosity on both kinetic and potential energy. All terms are multiplied by the
wavenumber to compensate for logarithmic shrinking.

to observations that show rough equipartition between kinetic and potential energy
(Callies & Ferrari 2013; Callies et al. 2015). We currently do not understand the
reason for this difference.

The vertical structure of energy shows that the mixed-layer instabilities also energize
the thermocline below (figure 10b,d). At the instability scale, the flow does not reach
much into the thermocline. But as the horizontal scale of the flow increases, so does
the vertical scale. The flow exhibits the familiar property of geostrophic turbulence and
barotropizes as it increases its horizontal scale (Charney 1971; Smith & Vallis 2001).

The energy transfer into the thermocline is best examined through the spectral
energy budget (figure 11). Potential energy is extracted at the scale of the largest,
most energetic eddies, but the extraction is confined to the mixed layer (figure 11a).
Potential energy is transferred from the extraction scale to the scale of the mixed-layer
instability (figure 11b). The mixed-layer instability converts potential energy into
kinetic energy in the mixed layer, at the instability scale (figure 11c). The kinetic
energy created by the instability undergoes an inverse cascade, in which energy is
not only transferred to large horizontal scales, but also vertically into the thermocline
(figure 11d). The deposition of kinetic energy at the scale of the largest eddies is well
distributed across the mixed layer and upper thermocline. The vertical distribution
of the energy sink through hypoviscosity confirms that the flow extends below the
mixed layer at the scale of the largest eddies, where hypoviscosity acts (figure 11e).
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Hyperviscosity acts only at the smallest resolved scales (figure 11f ). While small,
it does affect the other terms in the budget. We do not discuss its effects any
further, because they are expected to disappear if the resolution is increased and the
hyperviscosity coefficient decreased.

These energy pathways are reminiscent of the phenomenology of two-layer baro-
clinic turbulence. The turbulent dynamics of a two-layer system can be understood in
terms of a dual cascade (Rhines 1977; Salmon 1978). Baroclinic energy is extracted
from the mean at the scale of the largest, most energetic, eddies. The barotropic flow
dominates at these scales and transfers the baroclinic energy downscale. The baroclinic
mode behaves like a passive tracer at these scales. Around the deformation radius,
the instability converts baroclinic energy into barotropic energy. The barotropic energy
then enters an inverse cascade, which is arrested at some scale by drag or hypoviscos-
ity. The forward cascade of baroclinic energy is compensated by the inverse cascade
of barotropic energy, such that no spectral transfer of total energy occurs. This is
consistent with the phenomenology that all sources and sinks of total energy occur at
the scale of the largest, most energetic eddies – no energy is dissipated at small scales.

Can the turbulent dynamics induced by mixed-layer instabilities be understood in
similar terms? To pursue the analogy, we must first introduce a modal decomposition
of the eddy energy. In our system, the vertically integrated total energy can be written
entirely in terms of the quantities at the surface and interface:

Ek,l =− 1
2 ψ̂

†θ̂ =− 1
2 ψ̂

†Lψ̂, (4.7)

where the conjugate transpose is denoted with a dagger. Since L is real and symmetric,
it can be diagonalized through a unitary matrix S,

L= S†DS, (4.8)

where D is diagonal and consists of the real eigenvalues of L, Djj = λj. The energy
can now be written as

Ek,l =−1
2
(Sψ̂)†D(Sψ̂)=−1

2

∑
j

λj|(Sψ̂)j|2. (4.9)

This defines the modes (Sψ̂)j that are orthogonal with respect to the energy norm,
i.e. the energy can be partitioned into contributions Ej

k,l from these modes. The
structure of the modes depends on wavenumber, because L and therefore S does.

For the mixed-layer-only case, with L given by (3.10), the eigenvalues of L are

λ0,1 = f kh

(
cothµm

Nm
+ 1

2Nt
±
√

csch 2µm

N2
m

+ 1
4N2

t

)
(4.10)

and we obtain the eigenvectors as the columns of S,

S =



1[
1+

(
coshµm + Nmλ0

f kh
sinhµm

)2
]1/2

1[
1+

(
coshµm + Nmλ1

f kh
sinhµm

)2
]1/2

coshµm + Nmλ0

f kh[
1+

(
coshµm + Nmλ0

f kh
sinhµm

)2
]1/2

coshµm + Nmλ1

f kh[
1+

(
coshµm + Nmλ1

f kh
sinhµm

)2
]1/2


.

(4.11)



Mixed-layer instabilities 27

0–1 1

Amplitude Amplitude Amplitude Amplitude

0(a) (b) (c) (d)

100

200

300

400

500

D
ep

th
 (

m
)

–1 0 1 –1 0 1 –1 0 1

FIGURE 12. Vertical structure of the streamfunction corresponding to orthogonal modes
in the mixed-layer-only case for different wavenumbers kh = 2π/λ, with the wavelength
λ given in the panel titles. For (a–c), the modes are normalized to unity at the interface
at 100 m depth; for panel (d), the modes are normalized to have a maximum value of
unity. Mode 0 is shown in blue, mode 1 in red. In (a–c), the two modes coincide below
the interface. (a) 1000 km wavelength; (b) 100 km wavelength; (c) 10 km wavelength;
(d) 1 km wavelength.

For large scales, kh� f /Nth or µm�Nm/Nt, this reduces to

λ0 =− f kh

2Nt
, λ1 =− 2f 2

N2
mh
, (4.12a,b)

and simply

S = 1√
2

(
1 1
1 −1

)
. (4.13)

Equation (4.13) indicates that at large scales, the first mode is barotropic in the
mixed layer. It behaves like a surface QG mode penetrating into the thermocline. The
streamfunction is proportional to kh times the conserved quantity (Held et al. 1995),

(Sψ̂)0 =− f kh

2Nt
(Sθ̂)0. (4.14)

The second mode at large scales is baroclinic in the mixed layer. The relation between
the streamfunction and the conserved quantity is

(Sψ̂)1 =− 2f 2

N2
mh
(Sθ̂)1, (4.15)

which is independent of kh, as expected for a baroclinic mode. These are the same
modes as those found in the linear stability analysis for large scales (figure 5f ).

This description of the orthogonal modes as barotropic and baroclinic mixed-layer
modes only applies at large scales. At smaller scales, the modes have a more
complicated vertical structure (figure 12). At scales smaller than the mixed-layer
deformation radius, they morph into modes that are decoupled and localized in the
vertical at the surface and at the interface. But for the cascade dynamics to be
discussed, the mode structure at large scales is what is most important.

We can now consider the energy budget of these modes. We start from the vertically
integrated spectral energy budget, written in terms of the conserved quantities and
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corresponding streamfunctions at the surface and interface:

∂Ek,l

∂t
=−Reψ̂† ∂ θ̂

∂t
. (4.16)

Using the unitary matrix S, we can rewrite this as

∂Ek,l

∂t
=−Re (Sψ̂)†

∂

∂t
(Sθ̂)=−Re

∑
j

(Sψ̂)∗j
∂

∂t
(Sθ̂)j (4.17)

and thus split the energy budget into its modal components:

∂Ej
k,l

∂t
=−Re (Sψ̂)∗j

∂

∂t
(Sθ̂)j. (4.18)

The terms on the right-hand side of this budget can be obtained by substituting in the
spectral form of the evolution equation (4.1). To separate out the advective interactions
of the modes with themselves and with each other, we further expand the nonlinear
terms in (4.1), using the distributive property of the Jacobian operator, into

J(ψ, θ)= J(ψ0, θ 0)+ J(ψ0, θ 1)+ J(ψ1, θ 0)+ J(ψ1, θ 1). (4.19)

Here we split the vectors holding the streamfunction and the conserved quantities at
the surface and interface into their modal components,

ψ̂ j = S†P jSψ̂, θ̂ j = S†P jSθ̂ , ψ =
∑

j

ψ j, θ =
∑

j

θ j, (4.20a−d)

where P j are the projections onto the respective modes,

P0 =
(

1 0
0 0

)
, P1 =

(
0 0
0 1

)
. (4.21a,b)

The first term in (4.19) represents the advection of the barotropic mode by the
barotropic mode, to use the naming convention introduced above. The second term
represents the advection of the baroclinic mode by the barotropic mode, and so on.

In terms of the orthogonal modes, the energy budget is very similar to that of a
baroclinic two-layer system (figure 13, cf. Larichev & Held 1995). The extraction of
potential energy from the mean flow is concentrated at the scale of the largest, most
energetic, eddies and creates mostly baroclinic energy (figure 13b). The dominant sink
is by hypodiffusion, which also acts on the largest, most energetic, eddies. Barotropic
energy dominates at these scales, so hypodiffusion takes out mostly barotropic energy
(figure 13a). The transfer of energy from the baroclinic mode to the barotropic
mode occurs through a dual cascade in the submesoscale range. The baroclinic and
barotropic energy components are cascaded in opposite directions so as to yield a
vanishing spectral transfer of total energy. Baroclinic energy is transferred down to the
instability scale, achieved by the advection of the baroclinic mode by the barotropic
mode (figure 13b). The energy deposited around the instability scale is transferred
to the barotropic mode by interactions between the two modes, which represents
baroclinic instability (figure 13b). This energy enters the barotropic budget rather less
localized in wavenumber space (figure 13a). An upscale spectral transfer of barotropic
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FIGURE 13. Modal energy budget for the mixed-layer-only case. The advective terms
correspond to the contributions from the four terms in (4.19). The energy tendencies are
multiplied by wavenumber to compensate for logarithmic shrinking. (a) Barotropic budget;
(b) baroclinic budget.

energy closes the budget, taking energy from the instability scale to the scale of the
largest, most energetic, eddies, where hypodiffusion acts (figure 13a). Energy loss by
hyperdiffusion again enters the budget, but is neglected in this discussion, because it
is an artefact of finite resolution.

This model thus exhibits a dual cascade analogous to the classic two-layer system.
Baroclinic energy is transferred downscale through advection by the barotropic mode,
baroclinic instability converts baroclinic into barotropic energy, and barotropic energy
is transferred back upscale in an inverse cascade. The difference is that the barotropic
mode at large scales behaves like a surface QG mode, instead of a truly barotropic
or two-dimensional mode. The inverse cascade is therefore expected to yield a
〈Ekh〉 ∼ k−1

h surface energy spectrum (Blumen 1978), which we find to emerge if the
inertial range is wide enough (not shown). More importantly, the surface-QG-like
behaviour implies that in the inverse cascade, energy is transferred to successively
larger vertical scales. This provides a pathway for mixed-layer instabilities to energize
the thermocline below.

4.3. Full model
We now consider the case with both mesoscale and submesoscale instabilities present.
This full model allows us to address how mesoscale thermocline instabilities modify
the energy cycle induced by submesoscale mixed-layer instabilities. Furthermore, we
pursue a one-to-one comparison between surface-QG dynamics and the dynamics
modified by mixed-layer instabilities, with a focus on vertical energy distribution and
vertical velocities.

The linear growth rate of the mixed-layer instability is much larger than that of
the thermocline instability (figure 5a), so during the initial transient of the nonlinear
simulations the mixed-layer instability grows to finite amplitude first. The evolution in
the mixed layer is very similar to that of the mixed-layer-only case: the eddies grow
in size until they come into statistical equilibrium with hypoviscosity.
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FIGURE 14. Wavenumber spectra of kinetic and potential energy from the full model
simulation. (a) Kinetic and (b) potential energy spectra at the surface and 100 m depth
(just below mixed-layer base), spectral density of (c) kinetic and (d) potential energy in
the wavenumber–depth plane. In (c,d), no values below 10−3 m3 s−2 are shown. Reference
lines with slopes −3 and −5/3 are shown in grey.

The equilibrated state of the full model is also very similar to that of the mixed-
layer-only case in the mixed layer and upper thermocline (figure 14). The energy
levels and spectra at the surface and the base of the mixed layer are very similar.
Near the bottom, a wedge in wavenumber–depth space is energized in the full model,
just like in the thermocline-only case. This is due to surface QG turbulence at the
bottom level.

The energy budget is similar to the mixed-layer-only case (figure 15). The main
energy pathway is again extraction of potential energy in the mixed layer, transfer to
the mixed-layer instability scale, conversion to kinetic energy, transfer back to large
scales and into the thermocline and dissipation by hypoviscosity. There is additional
energy extraction in the thermocline, but that is weak compared to the extraction in the
mixed layer. The dominant dynamics is therefore that described for the mixed-layer-
only case. Interaction with the bottom level is possible, but of secondary importance
in the parameter regime of relevance.

A different picture emerges when the horizontal buoyancy gradient and the
associated geostrophic shear in the mixed layer is (unrealistically) reduced. We
choose the mixed-layer shear such that the growth rates of the two instabilities
are comparable, which from Eady scaling occurs if Λm/Nm = Λt/Nt and we set
Λm= 2.5× 10−5 s−1. The horizontal scales of the instabilities and the overall structure
of the dispersion curves are the same as those in figure 5(a,d).
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FIGURE 15. Spectral energy budget for the full model simulation. The terms are
(a) potential energy extraction from the mean, (b) spectral potential energy flux divergence,
(c) potential to kinetic energy conversion, (d) kinetic energy flux divergence, including
spectral flux and pressure flux, (e) hypoviscosity on both kinetic and potential energy, and
(f ) hyperviscosity on both kinetic and potential energy. All terms are multiplied by the
wavenumber to compensate for logarithmic shrinking.

This system with reduced mixed-layer shear equilibrates to much lower energy
levels than the constant-shear case. The energy levels are comparable to the
thermocline-only case and thus allow a one-to-one comparison of the dynamics with
and without a mixed layer. The vertical structure of energy in this case with a mixed
layer is quite different from the thermocline-only case, because the energy pathway
enabled by the mixed-layer instability is still present – mixed-layer instabilities are,
on average, not suppressed by the mesoscale strain field (cf. Bishop 1993a,b; Spall
1997; McWilliams, Molemaker & Olafsdottir 2009). The mixed-layer instability, while
not significantly increasing the mesoscale energy levels, does energize the mixed layer
at the submesoscales.

This difference between mixed-layer dynamics and surface QG turbulence is also
reflected in the vertical velocities that are produced by the instabilities (figure 16).
While the available potential energies are the same and the resulting surface
energy levels comparable between this reduced mixed-layer shear case and the
thermocline-only case, there are much larger vertical velocities in the presence of a
mixed layer. These enhanced vertical velocities extend significantly below the base
of the mixed layer. The largest vertical velocities are located near fronts in the
filamentary sea (figure 17). Coherent vortices, while associated with large buoyancy
gradients, induce relatively weak vertical motion. The large vertical velocities appear
instead to be associated with the filamentary structure generated by mixed-layer
instabilities.
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The enhancement of vertical velocities in the presence of mixed-layer instabilities
can be understood by considering the omega equation (Hoskins et al. 1978):

N2∇2w+ f 2 ∂
2w
∂z2
=−2∇ ·Q, (4.22)

where

Q=
(
∂u
∂x
· ∇b,

∂u
∂y
· ∇b

)
. (4.23)

The vertical velocity can be written as a convolution of the Green’s function of (4.22)
with the forcing term on the right of (4.22). While the forcing term is not changing
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much between the cases with and without the mixed layer, the Green’s functions do.
The reduced stratification in the mixed layer enhances the response to the forcing term
there (Thomas, Tandon & Mahadevan 2008). The enhancement of vertical velocities in
our simulation with a mixed layer can thus be attributed to the reduced stratification.
Such a reduction of stratification is always associated with a mixed-layer instability,
however, so the enhanced vertical velocities are inextricably linked to mixed-layer
instabilities.

The forcing term on the right of (4.22) is of the same order in our two cases,
because by design the mean states have the same available potential energy and
similar submesoscale energy levels are produced. It should be kept in mind, however,
that the forcing term does likely increase in the real ocean when mixed layers
become deep and mixed-layer instabilities energize the submesoscale range. The
more energetic submesoscale turbulence in the wintertime mixed layer is expected to
be associated with stronger submesoscale strains than are present in summer (Callies
et al. 2015). In the wintertime mixed layer, vertical velocities are then enhanced by
both a decreased stratification and an increased forcing term on the right of (4.22).
Mixed-layer instabilities in the real ocean thus most likely drive an even more
dramatic increase in vertical velocities in winter than is present in our simulations
with and without mixed layer.

The root-mean-square vertical velocities (figure 16) are similar in structure to
those found in primitive equation models (Capet et al. 2008b). A careful comparison
is necessary to establish whether the QG dynamics described here reproduces the
magnitude of the vertical velocities or whether non-QG effects significantly enhance
or reduce them (cf. Mahadevan & Tandon 2006). Such a comparison is beyond the
scope of this article.

The interface between mixed layer and thermocline is located at z=−h+ η, where
the interface displacement η is determined by requiring the total buoyancy field to be
continuous at the interface,

N2
mη+ b(−h+)=N2

t η+ b(−h−), (4.24)

where the total buoyancy was linearized around z=−h, consistent with QG scaling.
The interface is material in the sense that

∂η

∂t
+ J(ψ, η)=w. (4.25)

To leading order, there is therefore no exchange of fluid between mixed layer
and thermocline. If non-QG effects are taken into account, however, thermocline
waters can be folded into the mixed layer (Garner, Nakamura & Held 1992), where
atmospherically forced small-scale turbulence can transform them into mixed-layer
waters. It thus seems likely that mixed-layer instabilities enhance the exchange
between mixed layer and thermocline, but future work will have to investigate what
sets the rate of exchange.

5. Comparison to observations
A prominent feature of observed (Callies et al. 2015) and modelled (Mensa et al.

2013; Sasaki et al. 2014) submesoscale flows is their seasonal modulation: they
are much more energetic in winter than in summer. This is consistent with an
energization of the submesoscale by baroclinic mixed-layer instabilities. Given that
these instabilities grow on time scales of order 1 day, they can quickly release large
amounts of available potential energy stored in lateral buoyancy gradients in deep
winter mixed layers and energize the submesoscale range. Mixed-layer instabilities are
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instead weak in summer, when mixed layers are shallow and little potential energy is
available for release. Mesoscale-driven surface frontogenesis, on the other hand, is not
expected to drive a seasonal cycle in submesoscale turbulence, because the mesoscale
eddies that generate submesoscale filaments through frontogenesis are about as strong
in winter as they are in summer (or even slightly stronger in summer, Qiu (1999),
Qiu & Chen (2004) and Sasaki et al. (2014)).

Submesoscale flows observed in the wintertime Gulf Stream region (Callies et al.
2015) are energetic throughout the deep mixed layer and decay rapidly below. The
energy spectra roll off roughly like k−2

h in the mixed layer and transition to roughly
k−3

h below. This spectral and vertical distribution of energy resembles that produced by
our simple model of baroclinic mixed-layer instabilities, which similarly has spectra
that roll off roughly like k−2

h in the mixed layer and more steeply in the thermocline
(figure 14). The equilibrated turbulent flow produced by baroclinic mixed-layer
instabilities in this model is thus qualitatively consistent with the energetic wintertime
submesoscale flows observed in the Gulf Stream region. In summer, on the other
hand, submesoscale flows in the Gulf Stream region are weak. The spectral roll off is
a rapid k−3

h , even close to the surface. This lack of submesoscale energy is expected
from the lack of energy input from baroclinic mixed-layer instabilities.

There is so far no observational evidence for submesoscale flows that are governed
by mesoscale-driven surface frontogenesis as described by surface QG turbulence.
The spectral slope of surface kinetic energy may be consistent with the predictions
of surface QG theory (e.g. Le Traon et al. 2008), but the subsurface structure is
not. The observations from the Gulf Stream region (Callies et al. 2015) show that
the spectral and vertical distribution of submesoscale energy is different from that
produced by surface QG turbulence (figure 8), in both summer and winter. In winter,
submesoscale flows are observed to be energetic throughout the mixed layer – not
just in a thin surface layer as predicted by surface QG turbulence. In summer,
when baroclinic mixed-layer instabilities are not active and mesoscale-driven surface
frontogenesis could dominate, submesoscale flows are observed to be weak – there is
no surface-trapped enhancement as predicted by surface QG turbulence. This suggests
that these weak summertime submesoscale flows are instead dominated by deep modes
generated by mesoscale thermocline instabilities. Observations from Drake Passage
also show no signature of mesoscale-driven surface frontogenesis (Rocha et al. 2015).
Whether it dominates the energization of submesoscale flows elsewhere remains an
open question. It may be expected to dominate outside the major current systems,
where thermocline instabilities depend on surface buoyancy gradients and can more
effectively drive a surface QG cascade (Charney 1947; Tulloch et al. 2011; Roullet
et al. 2012), but observations are lacking. Balanced submesoscale flows can also be
masked by internal waves, especially where mesoscale eddies – and consequently any
balanced submesoscale flows – are weak (Richman et al. 2012; Callies & Ferrari
2013; Bühler, Callies & Ferrari 2014; Rocha et al. 2015).

Spectra that are observed to fall off like k−3
h in the seasonal thermocline in summer

and in the permanent thermocline throughout the year (Callies et al. 2015) cannot
be reproduced by the model formulated in this article. These steep spectra are likely
the result of deep Phillips-type instabilities (Phillips 1954) and the potential enstrophy
cascade of interior quasi-geostrophic turbulence (Charney 1971). Such a cascade is not
present in our model, which collapses the interior PV gradients into delta sheets at the
interface between mixed layer and thermocline and at the rigid bottom at the base of
the thermocline. Our model does capture, however, the steepening of energy spectra
below the winter mixed layer – it only lacks the appropriate thermocline dynamics to
yield k−3

h spectra.
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The cascade dynamics of our simple QG representation of baroclinic mixed-layer
instabilities shows that the mesoscale can effectively be energized by baroclinic
mixed-layer instabilities. This would suggest that not only submesoscale but also
mesoscale eddies are more energetic in winter than in summer. Altimetry observations
(Qiu 1999; Qiu & Chen 2004) and realistic model simulations (Sasaki et al. 2014),
however, suggest that there is not a large modulation of mesoscale energy levels –
mesoscale eddies are even slightly stronger in summer than in winter. This lack of
wintertime energization of the mesoscale may result from a coupling with unbalanced
motions that is not captured by QG dynamics or from an equilibration process that
is longer than a season.

The QG model makes the baroclinic mixed-layer instabilities very effective in
energizing the entire turbulent flow, because there is no forward energy cascade
resulting in small-scale energy dissipation. If non-QG effects were allowed, a fraction
of the energy extracted from the mean in the mixed layer would be dissipated at
small scales (Capet et al. 2008d). This energy leak to small scales is likely as Rossby
and Froude numbers become order 1 at scales of order 1 km. The possibility of an
energy leak to small scales was demonstrated by Molemaker et al. (2010), who
studied an Eady instability with Ro = Fr = 0.5, using the full Boussinesq equations.
While much of the energy extracted from the mean is still trapped at large scales,
as predicted by QG dynamics, some is lost to dissipation at small scales. A small
leak of energy in the instability may make a big difference in the cascade dynamics,
because that energy is not transferred back to mesoscales, where it would further
enhance the extraction of potential energy from the mean. Such an effect could be
parameterized in our QG model, but is beyond the scope of this study.

An additional energy sink occurs if the balanced flow interacts with ageostrophic
instabilities in the mixed layer. In the presence of geostrophic shear, convective
motions forced by the atmosphere are the result of symmetric rather than gravitational
instabilities and are slantwise rather than upright (e.g. Emanuel 1994; Haine &
Marshall 1998; Thomas & Lee 2005). Symmetric instabilities can extract kinetic
energy from the geostrophic shear, so they can drain energy from the balanced flow
and increase dissipation (Taylor & Ferrari 2010; Thomas et al. 2013). This is another
way to render the inverse cascade less effective.

Additional sinks for energy in balanced flows in the mixed layer can be the
interaction with externally forced near-inertial waves (e.g. Whitt & Thomas 2015;
Xie & Vanneste 2015) and the interaction with surface gravity waves (McWilliams
& Fox-Kemper 2013; Hamlington et al. 2014). Both may drain enough energy out
of the balanced flow to prevent an effective inverse cascade of submesoscale kinetic
energy to mesoscales.

QG dynamics further do not allow for a feedback of eddies on the mean stratifica-
tion of the mixed layer (e.g. Fox-Kemper et al. 2008), so that no restratification can
occur. In the real ocean, the restratification through baroclinic mixed-layer instabilities
is opposed by convective and mechanical mixing that is driven by atmospheric forcing.
The fixed mean stratification in the QG model assumes that this forced vertical mixing
is in balance with restratification. It is unclear whether and how vertical mixing alters
the energy budget of the balanced flow in the mixed layer. It is also unclear what
the effect of an unsteady atmospheric forcing is, which upsets the balance between
vertical mixing and restratification.

Another possible explanation for the lack of a wintertime energization of the
mesoscale by baroclinic mixed-layer instabilities is that it takes a few months for
the kinetic energy injected by submesoscale mixed-layer instabilities to arrive at the
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mesoscale (Sasaki et al. 2014). This could also explain the (weak) summer maximum
in mesoscale energy (Qiu 1999; Qiu & Chen 2004). This time dependence is not
addressed in our simple model of baroclinic mixed-layer instabilities, in which we
prescribe perpetual winter conditions. If the time scale of turbulent equilibration
is not much shorter than the seasonal time scale, it is likely that submesoscale –
and possibly mesoscale – flows are not in statistical equilibrium. It remains to be
investigated how a seasonally modulated mixed layer modifies the inverse cascade
and the energization of the mesoscale by baroclinic mixed-layer instabilities.

Realistic high-resolution simulations of the type employed by Shcherbina et al.
(2013), Sasaki et al. (2014), Gula, Molemaker & McWilliams (2015) may be able to
address these caveats and bridge the gap between observations and the idealized QG
dynamics described here. These primitive equation and Boussinesq simulations can
provide insights into how non-QG effects modify the submesoscale dynamics induced
by mixed-layer instabilities. An exploration of non-QG effects in more idealized
set-ups may also prove useful. Primitive equation and Boussinesq simulations can
also address how non-QG effects modify mesoscale-driven surface frontogenesis and
allow an estimate of the importance of corrections to surface QG turbulence (cf.
Hakim et al. 2002; Capet et al. 2008c; Klein et al. 2008; Badin 2012; Roullet et al.
2012), providing another stepping stone for understanding observations.

6. Conclusions

The simple model formulated in this article sharpens our understanding of how
baroclinic mixed-layer instabilities can energize submesoscale turbulence and how
this mechanism differs from mesoscale-driven surface frontogenesis. Our analysis
suggests that the presence of a mixed layer has a profound effect on submesoscale
turbulence. Lateral buoyancy gradients, combined with the low stratification in the
mixed layer, provide a large amount of available potential energy that can be extracted
by baroclinic instabilities in the mixed layer. The extraction of available potential
energy from the large-scale mean is dominated by mesoscale eddies, but potential
energy is subsequently transferred downscale to the deformation radius of the mixed
layer, where baroclinic instability converts it into kinetic energy. In the QG dynamics
considered here, the energy lost to small scales is negligible. The entire energy
extracted from the mean in the mixed layer is converted to kinetic energy around
the deformation radius of the mixed layer and subsequently transferred back to larger
scales in an inverse cascade that also energizes the thermocline below. Through this
process, baroclinic mixed-layer instabilities can energize the submesoscale range and
even the mesoscale eddy field.

This turbulent dynamics follows a dual cascade similar to that present in two-layer
QG flow (Rhines 1977; Salmon 1978; Larichev & Held 1995) and in idealized
continuously stratified QG flows (Smith & Vallis 2002) – but with mixed-layer
modes. The energy in the baroclinic mode, which is baroclinic in the mixed layer
and does not reach much into the thermocline, is transferred downscale through
advection by the barotropic mode, which is barotropic in the mixed layer and decays
surface-QG-like in the thermocline. Around the deformation radius of the mixed layer,
baroclinic instability transforms baroclinic into barotropic energy, which then enters
an inverse cascade.

The dynamics resulting from baroclinic mixed-layer instabilities substantially
differs from mesoscale-driven surface frontogenesis, as described by surface QG
turbulence forced by a mesoscale eddy field, which is often invoked to explain
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energetic submesoscales. Surface QG turbulence can only energize a thin surface
layer. Mixed-layer instabilities, instead, energize the entire depth of the mixed layer.
Vertical velocities are drastically enhanced in the presence of baroclinic mixed-layer
instabilities compared to surface QG flows of similar energy levels.

The enhancement of submesoscale energy throughout the mixed layer and the decay
below its base, as generated by baroclinic mixed-layer instabilities, are consistent
with wintertime observations from the Gulf Stream region (Callies et al. 2015).
These observations, as well as models (Mensa et al. 2013; Sasaki et al. 2014),
also show that submesoscale flows are most energetic in winter, when baroclinic
mixed-layer instabilities are active. This evidence points to the importance of
baroclinic mixed-layer instabilities in energizing the submesoscale.

It remains to be investigated how deviations from QG dynamics affect submesoscale
flows when a mixed layer is present. The restratification by mixed-layer instabilities,
the formation of buoyancy discontinuities, ageostrophic instabilities and forced
mixed-layer turbulence all have the potential to modify the leading-order balanced
dynamics described here. For example, it remains unclear how much of the
submesoscale kinetic energy generated by baroclinic mixed-layer instabilities is
cascaded to mesoscales, how vertical velocities are modified by non-QG effects and
how the enhancement of vertical velocities by mixed-layer instabilities translates into
an exchange of fluid between mixed layer and thermocline.

It is hoped that the model and dynamics discussed here in an oceanographic context
are of interest in a broader geophysical fluid dynamics context. Atmospheres often
display layers of different stratification, which likely induce similar dynamics. These
have partly been explored for the terrestrial atmosphere and it seems likely that similar
dynamics also occur in the atmospheres of other planets.
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Appendix A
A QG system of n layers of constant PV, of thickness hj and stratification Nj,

consists of n + 1 conserved quantities that are advected by the geostrophic flow at
their respective levels. Compared to the two-layer model considered in the main text,
additional interface quantities analogous to θ1 are present. The linear operator in the
inversion relation (2.9a) has tridiagonal structure:

L= f kh
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where µj = Njkhhj/f . It may be more efficient to solve the inversion relation
numerically instead of calculating the inverse of this matrix, which will generally
be full.

One can also include a PV gradient due to differential rotation. This can be done
using a trick described by Lindzen (1994): instead of using linear shear and constant
stratification in the layers, one can use parabolic shear or a modified stratification
profile, which allows cancellation of the contribution from the β-effect and retaining
constant PV within the layers. The PV gradient due to β is then included in the PV
sheets at the interfaces.

Appendix B
If there is a buoyancy jump g′ at the interface, the matching conditions must be

modified. To ensure a continuous pressure at the interface at z=−h+ η, we require

ψ(−h+)−ψ(−h−)=−g′

f
η. (B 1)

Here, η is the perturbation of the interface between the constant-PV layers. The
buoyancy equations (2.2) and (2.3) can be combined with the kinematic condition

w= ∂η
∂t
+ J(ψ, η), (B 2)

applied at z=−h+ and z=−h−, to give

∂θ1

∂t
+ J(ψ1, θ1)= 0,

∂θ2

∂t
+ J(ψ2, θ2)= 0, (B 3a,b)

where

θ1= f
b(−h+)

N2
m

+ fη, θ2= f
b(−h−)

N2
t

+ fη, ψ1=ψ(−h+), ψ2=ψ(−h−). (B 4a−d)

Together with the conservation of surface and bottom buoyancy,

θ0 =−f
b(0)
N2

m

, θ3 = f
b(−H)

N2
t

, (B 5a,b)

and the inversion relation obtained by solving (2.10) with the matching conditions
above, the model is complete. It now consists of four conserved quantities.
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