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ABSTRACT

The large-scale circulation of the abyssal ocean is enabled by small-scale diapycnal mixing, which obser-

vations suggest is strongly enhanced toward the ocean bottom, where the breaking of internal tides and lee

waves is most vigorous. As discussed recently, bottom-intensifiedmixing induces a pattern of near-bottomup-

and downwelling that is quite different from the traditionally assumed widespread upwelling. Here the

consequences of bottom-intensified mixing for the horizontal circulation of the abyssal ocean are explored by

considering planetary geostrophic dynamics in an idealized ‘‘bathtub geometry.’’ Up- and downwelling layers

develop on bottom slopes as expected, and these layers are well described by boundary layer theory. The

basin-scale circulation is driven by flows in and out of these boundary layers at the base of the sloping to-

pography, which creates primarily zonal currents in the interior and a net meridional exchange along western

boundaries. The rate of the net overturning is controlled by the up- and downslope transports in boundary

layers on slopes and can be predicted with boundary layer theory.

1. Motivation

The large-scale circulation of the abyssal ocean—

below about 2000-m depth—is enabled by diabatic

water-mass transformation. Antarctic Bottom Water

sinks to the ocean bottom at the Antarctic margin, and

it must cross density surfaces to come back up toward

the surface (e.g., Lumpkin and Speer 2007; Talley

2013; Ferrari 2014). In steady state, this net upwell-

ing across density surfaces must be balanced by diabatic

transformation. This transformation is achieved by tur-

bulence on scales smaller than about 100m, produced

primarily by breaking internal waves, which mix light

water down into dense water (e.g., MacKinnon et al.

2013).1

Observations of the distribution of small-scale tur-

bulence in the water column, however, suggest that

mixing induces sinking instead of upwelling in the inte-

rior ocean (Polzin et al. 1997; Ledwell et al. 2000;

St. Laurent et al. 2001; Ferrari et al. 2016; de Lavergne

et al. 2016). This pattern emerged through microstruc-

ture measurements and tracer release experiments,

which repeatedly showed that small-scale turbulence is

strongly enhanced over rough topographic features and

decays upward on a scale of a few hundred meters (e.g.,

Polzin et al. 1997; Ledwell et al. 2000; Waterhouse et al.

2014). Within this layer of bottom-intensified mixing,

water parcels mix more with the dense water below than

with the light water above, so they lose buoyancy and

sink. This transformation has the wrong sign for allowing

Antarctic Bottom Water to come back toward the

surface.

This apparent conundrum is resolved if the ocean’s

bathymetry is taken into account (Ferrari et al. 2016; de

Lavergne et al. 2016; McDougall and Ferrari 2017).

Water parcels adjacent to the bottom only mix with the

light water above and thus gain buoyancy. If the bottom

is sloping, this allows upwelling along the bottom and

across density surfaces. The bathymetry also determinesCorresponding author: Jörn Callies, jcallies@caltech.edu

1Overflows at narrow passages between ocean basins have also

been suggested as major contributors to mixing (e.g., Polzin et al.

1996; Roemmich et al. 1996; Bryden and Nurser 2003; Huussen

et al. 2012). We here focus on the water-mass transformation from

internal wave breaking.
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where in the water column the mixing occurs—and the

geometries of density surfaces and the ocean bottom

conspire to let bottom-trapped upwelling outweigh in-

terior downwelling.

These arguments have so far only considered the

water-mass budget. The implied pattern of up- and

downwelling along topographic slopes, however, sug-

gests that the dynamics of the abyssal circulation, also

known as the lower cell of the meridional overturning

circulation, are drastically different than previously as-

sumed. We here explore the dynamical implications of

bottom-intensifiedmixing on sloping bathymetry using a

planetary geostrophic model in a simple ‘‘bathtub

geometry.’’

2. Background

The theory of the abyssal circulation goes back to a set

of classic papers by Stommel and Arons (1960a,b).

Lacking firm observational constraints on small-scale

turbulence at the time, they postulated uniform up-

welling out of the abyssal ocean, as suggested by diffu-

sive thermocline theory (Robinson and Stommel 1959).

The horizontal circulation that develops in response to

the upwelling can be inferred using planetary geo-

strophic vorticity dynamics (e.g., Pedlosky 1998):

buy 5 f
›uz

›z
, (1)

where uy and uz are the meridional and vertical com-

ponents of the velocity vector, f is the Coriolis parame-

ter, and b is the meridional gradient of the Coriolis

parameter.2 For simplicity, we assume a b-plane geom-

etry here and throughout the paper. A spherical geom-

etry would make a quantitative difference, but it is not

expected to change the qualitative description of the

abyssal circulation, which is what we are concerned

with here.

Stommel andArons (1960a,b) inferred from (1) that if

there is upwelling at the top of the abyssal layer, uz . 0,

and if the bottom is flat and thus uz 5 0 there, fluid

columns are stretched and move poleward. This pole-

ward flow in the interior of the basin is fed by western

boundary currents that connect the interior flowwith the

sources of abyssal water at high latitudes.

The predicted poleward interior flow is very weak and

has never been observed. The great success of the

Stommel–Arons theory was instead its prediction of

deep western boundary currents, observations of which

were emerging around the same time (Wüst 1955;

Swallow 1957; Warren 1981). Deep western boundary

currents, however, are not unique to the uniform up-

welling envisioned by Stommel andArons (1960a,b) and

should not be taken as its confirmation. We will show

below that bottom-intensified mixing on slopes drives a

basin-scale circulation that similarly includes deep

western boundary currents but no uniform upwelling

and no meridional flows away from the ocean

boundaries.

It is unlikely that the real ocean has widespread up-

welling because there is not enough mixing to allow for

it. Upwelling across density surfaces must be sustained

by the diabatic transformation achieved by small-scale

turbulence. Assuming the dominant balance in the

buoyancy equation to be between vertical advection and

turbulent diffusion,

uz›b

›z
5 k

›2b

›z2
, (2)

Munk (1966) argued that the observed stratification

below 1000m in the central Pacific was ‘‘not in-

consistent’’ with a constant upwelling and a constant

turbulent diffusivity k of the order 1024m2 s21. But

subsequent estimates of the turbulent diffusivity from

observations of small-scale turbulence in the ocean in-

terior turned out to be an order of magnitude smaller

than Munk’s estimate (e.g., Gregg 1987; Ledwell et al.

1993; Munk and Wunsch 1998).

It was instead discovered that mixing is strongly en-

hanced over rough topographic features (e.g., Polzin

et al. 1997; Ledwell et al. 2000; Waterhouse et al. 2014).

This enhancement of mixing appears to be due to the

nature of the physical processes that produce it. Tidal

and geostrophic flows passing over rough topography

displace isopycnals and thus generate internal waves

(e.g., Garrett and Kunze 2007). These waves, when they

are of large enough amplitude, induce convective and

shear instabilities and thus produce turbulence, which is

strongest near the bottom and rapidly decays away from

it (e.g., Muller and Bühler 2009; Nikurashin and Ferrari

2010; Nikurashin and Legg 2011).

This bottom enhancement of small-scale turbulence

has important consequences for the circulation (Ledwell

et al. 2000; St. Laurent et al. 2001; Ferrari et al. 2016).

Assumingmixing to be balanced by vertical advection as

in (2), but allowing for a bottom-intensified turbulent

diffusivity k(z),

uz›b

›z
5

›

›z

�
k
›b

›z

�
, (3)

2 The unconventional notation for the velocity components is

common in tensor calculus, which we will employ in earnest for

coordinate transformations below.
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the observed stratification and estimates of mixing can

be used to infer vertical velocities. If the turbulent dif-

fusivity k decreases with z more rapidly than the strati-

fication ›b/›z increases, the turbulent buoyancy flux

(which is equal to 2k›b/›z) is divergent, the right-hand

side of (3) is negative, and water parcels become denser

through the effect of mixing. In stable stratification, this

means that there must be downwelling to balance the

mixing.3 Only very close to the sea floor, where the

turbulent buoyancy flux must go to zero, do water

parcels gain buoyancy through mixing and does

upwelling occur.

These dynamics of bottom-intensified mixing on

slopes can be described by boundary layer theory, which

considers the local response of a stratified ocean to

mixing and to the no-flux condition on buoyancy along a

sloping boundary (e.g., Phillips 1970; Wunsch 1970;

Garrett et al. 1993). The theory describes how turbulent

diffusion can be balanced by across-slope flow and, for

bottom-intensified mixing, indeed predicts upwelling

along the bottom, downwelling right above, and no up-

or downwelling in the far field.

The bottom-intensified nature of mixing thus suggests

that all up- and downwelling occurs in boundary layers

on slopes and that there is little vortex stretching and

hence meridional flow in the interior. The goal here is to

understand how the bottom boundary layer flows drive

a basin-scale circulation and produce net upwelling

and overturning, as required to maintain an abyssal

stratification.

It should be noted that the case of bottom-intensified

mixing considered here produces very different dy-

namics than the previously considered case of enhanced

mixing near the vertical sidewalls of a rectangular ocean

basin (Marotzke 1997; Samelson 1998; Callies and

Marotzke 2012). While the interior is largely adiabatic

and interior meridional flow is suppressed in both cases,

the way a basin-scale circulation is forced is very dif-

ferent. With vertical sidewalls and laterally intensified

mixing, the circulation consists of upwelling along the

zonal sidewall, balanced by downwelling associated with

upright convection along high-latitude sidewalls. With a

sloping bottom and bottom-intensified mixing, the cir-

culation consists of large up- and downwelling along

slopes, whose small residual balances the convective

sinking at high latitudes (Ferrari et al. 2016; McDougall

and Ferrari 2017). It is the vertical structure of mixing

that produces this pattern of up- and downwelling, not

its horizontal structure.

In the following, we explore the dynamics of an abyssal

circulation driven by bottom-intensified mixing in two

steps. First, we discuss the transient response of a uni-

formly stratified ocean to the insulating bottom boundary

condition, which bends isopycnals and induces flow if the

bottom is sloping (section 4). The bottomboundary layers

that emerge exhibit the up- and downwelling layers an-

ticipated from (3) for bottom-intensified mixing and are

well described by boundary layer theory (section 5). The

transient solutions eventually tend to a homogeneous

ocean with no flow. To get a steady circulation, we sub-

sequently force the production of dense water in the

southern high latitudes of a closed basin. In addition to

the bottomboundary layers, the circulation thendevelops

basin-scale flows that feed the boundary layers, as well as

western boundary currents that exchange fluid meridio-

nally (section 6). The net upwelling and meridional ex-

change is tightly controlled by the bottom boundary

layers on slopes, and boundary layer theory is used to

predict the net overturning (section 7). The modeling

approach and setup are discussed in the next section

(section 3) and in an appendix with details of the

implementation (appendix B).

3. Approach

a. Planetary geostrophic equations

To understand the essence of how bottom-intensified

mixing on slopes drives the abyssal circulation, we con-

sider the planetary geostrophic equations,

f z3 u52=p1 bz1F , (4)

= � u5 0, and (5)

›b

›t
1 u � =b5= � (k=b) , (6)

in an ocean of idealized shape, where f 5 by is the

Coriolis parameter, u is the velocity vector, p is pressure

divided by a reference density, b is buoyancy, F is a

vector field representing friction, z is the vertical unit

vector, and t is time. This system, with appropriate

boundary conditions, yields a self-consistent and fully

predictive description of the circulation and stratifica-

tion. It satisfies a simple energy budget, as discussed in

appendix A.

The planetary geostrophic equations (4)–(6) are an

approximation to the Boussinesq equations under

the assumption that the Rossby number is small, an

3 In the case of microstructure measurements, what is inferred

from the shear measurements is the kinetic energy dissipation rate

«, which is related to the turbulent buoyancy flux through a flux

ratio G. The balance in (3) then becomes uz(›b/›z)5 ›(G«)/›z. The
available observations of « and estimates of the flux ratio (and its

variations; e.g., Gregg et al. 2018) strongly suggest the right-hand

side is negative over the layer of enhanced mixing near the rough

ocean floor.
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assumption that is well justified for the large-scale cir-

culation of the abyssal ocean. This approximation pre-

vents the development of mesoscale eddies, and it filters

out both inertia–gravity waves and small-scale turbu-

lence. The buoyancy transfer by small-scale turbulence

is represented by diffusion. The planetary geostrophic

equations have been used widely as a starting point in

the analytical and numerical study of the large-scale

ocean circulation (e.g., Robinson and Stommel 1959;

Welander 1959; de Verdière 1988; Samelson and Vallis

1997a; Salmon 1998a; Pedlosky 1998). Notably, the ne-

glect of inertia in (4) has no effect on the steady flow in

boundary layers on slopes (cf. Garrett et al. 1993).

We consider the planetary geostrophic equations

with a continuous vertical coordinate because that al-

lows the representation of bottom-intensified mixing

with a bottom-intensified diffusivity. Representing small-

scale mixing in layered models is more difficult; the effect

of mixing is often parameterized by restoring or the pre-

scription of water-mass transformation (e.g., Tziperman

1986; Kawase 1987; Spall 2001). The continuous system

instead allows a self-consistent balance between advec-

tive and diffusive terms in the buoyancy budget, and a

buoyancy flux boundary condition can easily be prescribed

at a sloping bottom.

b. Friction

For the planetary geostrophic flow described by

(4)–(6) to satisfy a no-normal flow condition on

all boundaries, a form of friction F must be specified.

We follow Salmon (1990, 1992, 1994) in resorting to

Rayleigh friction,

Fx 52rux, Fy 52ruy, Fz 5 0, (7)

instead of the more common Fickian diffusion of mo-

mentum. While Rayleigh friction implies an unphysical

loss of momentum in the interior of the fluid, it has the

practical advantage of leading to mathematically sim-

pler boundary layers, both on the western boundary

(cf. Stommel 1948; Munk 1950) and in boundary layers

on slopes (section 5). These drag-controlled boundary

layers, however, should be regarded as nothing more

than simple stand-ins for the more complicated and in-

completely understood turbulent dynamics of the real

boundary regions. The friction parameter r is chosen to

be small enough for the momentum balance to be

dominantly geostrophic away from boundary layers and

the equator. The sensitivity of our solutions to the fric-

tion parameter is discussed in section 8.

Modern coarse-resolution ocean models employ a

Gent and McWilliams (1990) parameterization of meso-

scale eddies, which introduces a tendency to flatten out

isopycnals in the buoyancy budget. We forgo such a pa-

rameterization here for the sake of simplicity. Implementing

such a mesoscale parameterization in a thickness-weighted

average framework would move the additional tendency

term to the momentum equations, where it would appear as

the divergences of Eliassen–Palm vectors (Young 2012) and

replace our Rayleigh drag parameterization.

The friction parameterization in (7) imposes drag only

in the horizontal because the depth of the ocean basin

wewill consider goes to zeros continuously at its margins

(Salmon 1992). If vertical sidewalls were present, we

would need additional terms to accommodate thermal-

wind shear there. This is typically done either through

friction in the vertical, which generates nonhydrostatic

upwelling layers (Salmon 1986, 1990) or through

hyperdiffusion of buoyancy, which generates complicated

thermal boundary layers (Samelson and Vallis 1997b).

Neither of these is necessary in our case, an additional

indication that bottom slopes are a crucial element of

the low-Rossby-number dynamics.

c. Boundary conditions

With Rayleigh friction (7), the flow can satisfy a no-

normal flow boundary condition at the bottom, n � u5 0

at z52h(x, y), where n is the bottom-normal and

h(x, y) is the basin depth, as well as a rigid-lid condition

at the surface, uz 5 0 at z5 0. We neglect wind forcing

because we are concerned with the abyssal ocean, but in

principle this could be included through the prescription

of an Ekman pumping velocity at the surface.

For buoyancy, we impose an insulating boundary

condition at the bottom, n � =b5 0 at z52h(x, y),

neglecting any geothermal heat flux. Given that our

focus is on the abyssal circulation, the surface of the

domain at z5 0 can be thought of as being located at

2000-m depth in the real ocean. Since isopycnals are

approximately flat in the deep ocean basins, we

prescribe a constant buoyancy b5 0 at z5 0. This is not

appropriate for the Southern Ocean, however, where

isopycnal slopes are large. In reality, these sloping

isopycnals provide an adiabatic pathway to the surface

for the deep waters flowing out of the oceans basins.

Talley (2013) showed that the deep waters that enter

the Southern Ocean at a depth below 2000m come to

the surface in theWeddell and Ross Seas, where strong

surface buoyancy forcing through brine rejection by

freezing seawater and atmospheric cooling transforms

them back into denser waters, which sink to the bot-

tom. This transformation of deep to bottom waters is

in balance with the diapycnal transformation of bot-

tom to deep waters through mixing that characterizes

the lower cell of the meridional overturning circula-

tion. Without the surface transformation in our model
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(i.e., with b5 0 at z5 0), all solutions eventually tend

to a homogeneous ocean. The transients nevertheless

provide crucial insight into the boundary layer dy-

namics and are discussed in section 4.

To allow for a steady overturning and stable stratifi-

cation, we subsequently include a crude representation

of dense water formation. In the real ocean, winds and

mesoscale eddies in the Antarctic Circumpolar Channel

are thought to set the isopycnal slope, mapping the

meridional distribution of surface buoyancy to a vertical

stratification at the northern edge of the Southern

Ocean (e.g., Marshall and Radko 2003; Nikurashin and

Vallis 2011). This process operates on a time scale of

decades at most, so it is much faster than the diffusive

dynamics of the abyssal overturning, which operates on

centennial to millennial time scales. In section 6, the

effect of this fast process is represented through restor-

ing of buoyancy to a prescribed stratification in the

southern part of the basin. This restoring acts to trans-

form deep to bottom waters, and solutions can reach a

steady state with realistic stratification and overturning

in the basin.

We consider a ‘‘bathtub geometry’’ with the bottom

sloping like half-Gaussians on all sides:

h(x, y)5Hg(x)g(L2 x)g(L1 y)g(L2 y),

g(x)5 12 e2x2/(2l2s ) . (8)

The basin extends zonally from x5 0 to x5L and

meridionally from y52L to y5L. The maximum

depth is scaled by H, and the slope width is controlled

by ls. We use l̂s 5 ls/L5 0:1 throughout (Fig. 1), which

gives slopes comparable to those on the flanks of deep-

ocean ridges, where most of the abyssal mixing is

thought to occur.

d. Nondimensionalization and parameters

Wenondimensionalize the systemwith the coordinate

transformation

x5Lx̂, y5Lŷ, z5Hẑ (9)

and the substitutions

t5
bL3

N2H2
t̂, b5N2Hb̂, p5N2H2p̂, ui 5

N2H2

bL3
ûi .

(10)

Note that the factor in the velocity substitution has units

of inverse time because the coordinate transformation

takes care of the length units (ûx 5Lûx̂, ûy 5Lûŷ,

ûz 5Hûẑ):

ux 5
N2H2

bL2
ûx̂, uy 5

N2H2

bL2
ûŷ, uz 5

N2H3

bL3
ûẑ. (11)

The distinction between the coordinate transforma-

tion (9) and the substitutions (10) is important when

employing tensor calculus notation (e.g., Grinfeld

2013), and it becomes useful when we use terrain-

following coordinates and slope-aligned coordinates

(appendix B).

In the substitutions (10), we assumed to have avail-

able a stratification scale N2. In the solutions below, this

will be the initial stratification or the stratification we

restore to in the southern part of the domain. In both

cases, the actual bulk stratification remains fairly close

to this scale.

The equations in nondimensional Cartesian coordi-

nates then read

2ŷûŷ 52
›p̂

›x̂
2 r̂ûx̂ , (12)

ŷûx̂ 52
›p̂

›ŷ
2 r̂ûŷ , (13)

b̂5
›p̂

›ẑ
, (14)

›ûx̂

›x̂
1

›ûŷ

›ŷ
1

›ûẑ

›ẑ
5 0, and (15)

FIG. 1. Depth of the ocean basin used in most cases discussed in

this paper. The nondimensional depth ranges from 0 (white) to 1

(blue); the contour interval is 0.2. The slope width is l̂s 5 0:1. The

zonal and meridional coordinates are nondimensional as well.
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›b̂

›t̂
1 ûx̂›b̂

›x̂
1 ûŷ›b̂

›ŷ
1 ûẑ›b̂

›ẑ
5 â2

"
›

›x̂

 
k̂
›b̂

›x̂

!
1

›

›ŷ

 
k̂
›b̂

›ŷ

!#

1
›

›ẑ

 
k̂
›b̂

›ẑ

!
, (16)

and they contain the parameters

â5
H

L
, k̂5

kbL3

N2H4
, r̂5

r

bL
. (17)

These parameters have straightforward interpretations:

â is the aspect ratio of the basin, k̂ is the ratio of the time

it takes a long Rossby wave to propagate across the

basin bL3/N2H2 (using f ;bL) to the diffusive time

H2/k (if k is constant), and r̂ is the ratio of the Stommel

boundary layer width r/b to the basin widthL. If present,

any spatial dependence in k is inherited by k̂.

To get a sense for the size of these parameters, let us

consider typical scales:

L5 6000 km, H5 4000m, b5 23 10211m21s21,

N5 1023 s21 .

(18)

The aspect ratio of the ocean is very small, â; 1023.

This renders horizontal diffusion very small compared

to vertical diffusion, which is challenging to capture in a

numerical model. We will thus artificially increase the

aspect ratio to â5 0:2. Such an increase is equivalent to

increasing the horizontal diffusion coefficient, which is

not expected to qualitatively affect the solution as long

as â2 � 1 (cf. Veronis 1975). Note that an increase in â

has no effect on the dynamics or geometry of the

problem other than an increase in horizontal diffu-

sion—â appears nowhere in the equations but in front

of the horizontal diffusion term in (16), and the non-

dimensionalized bottom depth in (8) becomes in-

dependent of â as well. Using Munk’s (1966) estimate

of an average diffusivity, k5 1024 m2 s21, gives

k̂; 1023, suggesting that the ocean is generally in a

regime of weak diffusion (i.e., k̂ � 1). We will discuss

different values and spatial distributions of k̂ in the

following sections. The friction parameter is somewhat

arbitrary; we will use r̂5 0:1, such that the Stommel

boundary layer width is a tenth of the domain width.

The sensitivity to this parameter is investigated in

section 8.

e. Numerical model

Equations (4)–(6) are solved numerically in the non-

dimensional terrain-following coordinates:

ĵ5
x

L
, ĥ5

y

L
, ŝ5

z

h(x, y)
(19)

(e.g., Phillips 1957; Salmon 1998b; Haidvogel et al. 2000;

appendix B). These coordinates simplify the bottom

boundary conditions: n � u5 0 and n � =b5 0 at z52h

become ûŝ 5 0 and =ŝb̂5 0 at ŝ521, where upper in-

dices denote contravariant components.4 The price to

pay is that buoyancy forces enter the horizontal mo-

mentum equations because ŝ-coordinate lines are not

horizontal and that cross terms appear in the diffusion

operator because the coordinates are not orthogonal.

These extra terms are easier to keep track of if tensor

calculus notation is employed. The pressure gradient

error arising from the cancellation of two large terms in

the pressure gradient (Haney 1991) is alleviated by a

relatively high horizontal resolution.

The system (12)–(16) consists of a conservation

equation for buoyancy and a diagnostic relation be-

tween buoyancy and the flow. We thus implement the

dynamics by computing the flow from a given buoyancy

field and then using that flow field to time step buoyancy.

The flow field is obtained by first solving a two-

dimensional elliptic problem for the streamfunction of

the vertically integrated flow. Subsequently, the vertical

shear of the horizontal flow is obtained from the fric-

tionally modified thermal-wind balance and is added to

the depth-average flow. The velocity component ûŝ is

obtained by integrating the continuity equation in ŝ. See

section b of appendix B for details.

For the discretization, we use standard centered finite

differences on a grid that is equally spaced in all three

coordinates. One-sided second-order differences are

used in the cross terms of the diffusive fluxes near

boundaries, where centered differences are not possible.

All solutions are obtained with a grid spacing of

Dĵ5Dĥ5 0:01 and Dŝ5 0:05, a choice motivated by

the aspect ratio â5 0:2 and a grid fine enough for the

discretization error to be small. The grid is staggered,

with ûĵ located on ĵ faces, ûĥ on ĥ faces, ûŝ on ŝ faces, b̂

at cell centers, and the streamfunction for the vertically

integrated flow ĉ at (horizontal) cell nodes. Among a

number of advantages, this staggering allows us to

sidestep problems arising from the singularity of the

coordinate system at the coasts, where h5 0. Time

stepping with Dt̂5 2:53 1025 is explicit for the advec-

tion step, the horizontal diffusion step, and the step

4 Contravariant components of a vector are the components in the

direction normal to coordinate lines, so ûŝ is the velocity component

normal to ŝ-coordinate lines, and =ŝb̂ is the rate of change of b̂ in the

direction normal to ŝ-coordinate lines (see appendix B).
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involving the cross terms in the vertical diffusion term.

Vertical diffusion (excluding cross terms) is treated

implicitly because the vertical grid spacing becomes very

fine where the depth goes to zero, such that an explicit

treatment would be overly restrictive on the time step.

The restoring step in the equilibrating solutions is

performed through an exact integration of the continu-

ous equation over a time Dt̂. The Julia implementation

(Bezanson et al. 2017) is available online (at https://

github.com/joernc/pgcm).

4. Transient solutions

We begin by considering the transient adjustment

of a stratified ocean to the insulating bottom bound-

ary condition on buoyancy. The solutions are initial-

ized with a constant and uniform stratification, b̂5 ẑ

(dimensionally b5N2z), a buoyancy field that in the

absence of wind forcing is associated with no flow. This

initial condition satisfies b̂5 0 at ẑ5 0, but not n � =b̂5 0

at ẑ52ĥ.

While these transient solutions eventually tend to a

uniform buoyancy field b̂5 0 because there is no source of

dense water, the initial phase reveals key characteristics of

the diffusively driven abyssal flow. Diffusion sets up bot-

tom boundary layers, in which the bulk of the water-mass

transformation occurs, and across- and along-slope flows

develop in response. We will recognize these bottom

boundary layers in the forced steady solutions

discussed in section 6, and we will see that they exert

important control on the overall basin circulation. We

discuss the transient solutions at t̂5 1, which is too

short for diffusion to significantly alter the bulk in-

terior stratification, but it is long enough for the cir-

culation in the boundary layers on slopes to develop.

a. Flat bottom

To understand the role of bottom slopes in shaping the

circulation, it is instructive to briefly consider what

happens in their absence. If the bottom is flat, ĥ5 1, no

horizontal buoyancy gradients develop, and the ocean

remains motionless.5 The problem reduces to a one-

dimensional diffusion equation in ẑ, which for a uniform

diffusivity k̂ has the solution

b̂(ẑ, t̂)5
4

p2 �
‘

n51

(21)n 2 1

n2
e2(np/2)2 k̂t̂ cos

np(ẑ1 1)

2
. (20)

Buoyancy converges near the bottom, resulting in a

growing well-mixed boundary layer there. Eventually,

after a diffusive time t̂; k̂21, buoyancy becomes fully

homogenized.

b. Uniform mixing

This trivial behavior on a flat bottom contrasts with

the case with the ‘‘bathtub bathymetry’’ given by (8). On

slopes, buoyancy diffusion tilts isopycnals to satisfy the

insulating boundary condition—and thus induces flow.

To illustrate this, we begin with the case of uniform

diffusivity k̂5 0:01. We solve the equations numerically,

as described in the previous section. The relatively large

value of k̂ (corresponding roughly to k5 1023 m2 s21)

is chosen mostly because of numerical constraints;

a smaller k̂ would require higher resolution and thus

increase the computational demand beyond what is

easily achievable without parallelization.With this value

of k̂, all circulation features appear to be reasonably well

resolved. A smaller value of k̂ would not change the

results qualitatively but simply reduce the thickness of

boundary layers that develop along the sloping bound-

aries (cf. section 5).

As in the flat-bottom case, the diffusive buoyancy

fluxes converge near the bottom, where the no-flux

boundary condition must be satisfied, and boundary

layers develop rapidly (Figs. 2a–c). These boundary

layers are of different character on slopes, however,

where isopycnals tilt. This tilting causes a flow that

quickly arrests the growth of the boundary layers: the

convergence of buoyancy on the slope is balanced by

an upslope advection of dense water, which tends to

flatten isopycnals and thus maintains stratification.

The tilted isopycnals on slopes are associated with

along-slope geostrophic flow in the direction opposite

that of Kelvin wave propagation (cf. Benthuysen and

Thomas 2012): clockwise in the Northern Hemisphere

and counterclockwise in the Southern Hemisphere.

There are weak interior flows, as mandated by mass

balance.

The adjustment to the insulating boundary condition on

slopes thus induces a boundary layer flow that was not

anticipated by Stommel and Arons (1960b). Even though

the mixing is uniform, vigorous upwelling occurs on the

slopes, with broad compensating downwelling in the in-

terior. There is no net upwelling in this transient case be-

cause there is no site of dense water formation. But the

flow’s tendency to localize upwelling in boundary layers on

slopes carries over to the equilibrium case and can be

5As discussed above, the set (4)–(6) with horizontal Rayleigh

friction (7) generally cannot satisfy no-normal flow boundary

conditions at vertical sidewalls because the system cannot prevent

thermal-wind shear at the walls. This violation of boundary con-

ditions does not occur in the special case considered here because

there is no flow whatsoever.
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understood with the boundary layer theory of Phillips

(1970), Wunsch (1970), and Garrett et al. (1993), as dis-

cussed in section 5.

c. Bottom-intensified mixing

Before discussing boundary layer theory, we turn to the

more realistic casewith bottom-intensifiedmixing, inwhich

the boundary layers on slopes acquire a layer of downslope

flow above the bottom-trapped upslope flow. We set

k̂5 k̂
0
e2(ẑ1ĥ)/d̂ (21)

with k̂0 5 0:1 and d̂5 0:1. The volume-average diffusiv-

ity here is roughly the same as in the case with uniform

mixing. If the stratification remains similar between the

two cases, the sources of potential energy will have

similar magnitudes (appendix A), and a circulation of

similar strength is expected. The relatively large value of

k̂ is chosen for numerical convenience because we are

after the qualitative character of the induced circulation.

An analysis of the dependence of the solution on the

bottom value k̂0 is performed in section 7.

Flow quickly sets up in boundary layers on slopes

(Figs. 2d–f). The flow right above the bottom is similar to

the boundary layer flow of the uniform-mixing case,

though somewhat stronger. In this bottom-trapped layer,

the insulating bottom boundary condition again renders

the diffusive buoyancy flux convergent. Isopycnals dip

down, inducing upslope flow advecting dense water from

below and an along-slope flow in the direction opposite

that of Kelvin wave propagation.

The bottom intensification of k̂, however, renders

the diffusive buoyancy flux divergent above the

bottom layer. In the layer of diffusive buoyancy

flux divergence, which Ferrari et al. (2016) called

the ‘‘stratified mixing layer,’’ a negative buoyancy

anomaly prevails, such that isopycnals slope up slightly

before they dip down in the bottom layer. In response

to the negative buoyancy anomaly, a downslope flow

develops. The resulting downslope advection of

buoyant water from above balances the diffusive

buoyancy flux divergence, such that the boundary

region is close to a steady state at the time t̂5 1 of

the diagnostics. The downslope flow is weaker but

broader than the upslope flow below, carrying about

the same transport. The along-slope flow also reverses

direction above the bottom layer, becoming aligned

with the direction of Kelvin wave propagation. The

interior flow is weak.

5. Boundary layer theory

The dynamics of the near-bottom flow in the transient

solutions, both for uniform and bottom-intensified

mixing, can be understood with boundary layer theory.

As discussed in the next section, these boundary layers

also emerge in equilibrated solutions of the full system—

and in fact exert a controlling influence on the entire

abyssal circulation.

The approach taken here is analogous to that of

Phillips (1970), Wunsch (1970), and Garrett et al.

(1993). We consider the local adjustment to the

FIG. 2. Zonal sections for the transient solutions with sloping bottom at t̂5 1 for (left) uniform mixing (k̂5 0:01) and (right) bottom-

intensified mixing (k̂0 5 0:1; d̂5 0:1). The boundary layers on slopes are associated with tilted isopycnals (contours) as well as sizable

across- and along-slope flow (shading).
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insulating bottom boundary condition of a fluid with

prescribed stratification in the far field. Assuming

there are no variations in the across- and along-slope

directions, the dynamics reduce to a one-dimensional

problem in the slope-normal direction. For ease of

exposition, we work in dimensional quantities but

perform all calculations in nondimensional quan-

tities. The nondimensional equations are given in

appendix C.

In contrast to previous studies of the dynamics of

boundary layers on slopes, we use Rayleigh friction in-

stead of Fickian diffusion of momentum. Rayleigh fric-

tion is crude but yields simple solutions. It should be

regarded as a stand-in for the insufficiently understood

physics of turbulent boundary layers on a rough and

sloping bottom.

We begin by transforming the planetary geo-

strophic equations (4)–(6) to a coordinate system that is

aligned with an infinitely extending bottom at

z5 x tanu, with fixed slope angle u: x0 5 x cosu1 z sinu,

y0 5 y, and z0 52x sinu1 z cosu. The across-slope,

along-slope, and slope-normal velocity compo-

nents are then ux0 5 ux cosu1 uz sinu, uy0 5 uy, and

uz0 52ux sinu1 uz cosu. We split the buoyancy and

pressure fields into an imposed background, which has

constant stratification and is in hydrostatic balance, plus

a perturbation: b5N2z1 b0 5N2(x0 sinu1 z0 cosu)1 b0,
and p5N2z2/21 p0 5N2(x0 sinu1 z0 cosu)2/21p0. As

the slope is infinitely extending in x0 and y0, we assume

the perturbations to depend on the slope-normal dis-

tance z0 only. For consistency, we also neglect varia-

tions of the Coriolis parameter, f 5 f0 5by0, which is

justified as long as the horizontal width of the diffusive

boundary layer on the slope is smaller than the Stommel

boundary layer width r/b. In the absence of x0 and y0

variations, the continuity equation can only be satisfied

if uz0 5 0. Then,

2f
0
cosuuy0 5 b0 sinu2 r cos2uux0, (22)

f
0
cosuux0 52ruy0 , and (23)

›b0

›t
1ux0N2 sinu5

›

›z0

�
k

�
N2cosu1

›b0

›z0

��
. (24)

The only terms left in the buoyancy equation are the

tendency term, the advection of themean buoyancy field

by the across-slope flow ux0 , and the divergence of the

diffusive flux (including that due to the background

stratification). The insulating boundary condition at

z0 5 0 is

›b

›z0
5N2 cosu1

›b0

›z0
5 0, (25)

and a decay condition is imposed as z0 /‘. Combin-

ing the momentum equations (22)–(23) and substituting

ux0 in the buoyancy equation yields a single equation

in b0:

›b0

›t
1

rN2 tan2u

f 20 1 r2
b0 5

›

›z0

�
k

�
N2 cosu1

›b0

›z0

��
. (26)

Together with the boundary condition (25), this deter-

mines the time evolution of b0; the up- and along-slope

velocities follow from the momentum equations. The

system can reach a steady state by balancing diffusion

with across-slope advection.

For constant k, there is a simple analytical solution.

In steady state,

b0 5
N2 cosu

q
e2qz0 with q5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rN2 tan2u

k(f 20 1 r2)

s
. (27)

The solution has a bottom boundary layer of thickness

q21, in which buoyancy is increased (b0 . 0) to cancel

the contribution of the background stratification and

satisfy the insulating bottom-boundary condition

(Fig. 3). The across-slope flow is in the upslope direc-

tion (ux0 . 0 for u. 0), as required to balance the

convergence of the diffusive flux with advection of

dense water from below. The along-slope flow is in the

direction opposite that of Kelvin wave propagation

(f0u
y0 , 0 for u. 0) and is roughly in geostrophic bal-

ance away from the equator, where f0 � r or

ŷ0 � r̂5 0:1. This flow has the same structure as that

found in the full transient solution with uniform mixing

(Figs. 2a–c).

A more quantitative comparison between boundary

layer theory and numerical solutions is obtained by

considering the approach of the steady state, that is,

the transient solution to (26) with initial condition

b0 5 0. This corresponds to an initially constant strat-

ification, the same case as considered in the full

numerical solution described in section 4. The time-

dependent solution to (26) then is

b0 5
N2 cosu

q

�
e2qz0 2

1

2

�
e2qz0erfc

�
q
ffiffiffiffiffi
kt

p
2

z0

2
ffiffiffiffiffi
kt

p
�
1 eqz

0
erfc

�
q
ffiffiffiffiffi
kt

p
1

z0

2
ffiffiffiffiffi
kt

p
���

, (28)
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where erfc is the complementary error function. This

shows that the steady state (27) is approached on a time

scale of t; (kq2)21, the time it takes to diffuse across the

steady boundary layer of thickness q21.

To see to what degree this local analytical solution is

in agreement with the full numerical solution of the

previous section, we compare (28) pointwise to the full

solution. At every point on the ocean bottom, we pick

the local slope and Coriolis parameter, and we assign

(28) in the column above. The buoyancy and velocity

fields so constructed only approximately satisfy the full

equations of motion because we disregard variations

in slope and Coriolis parameter as well as surface

boundary conditions. Nevertheless, this heuristic so-

lution captures the shape of the isopycnals in the bot-

tom boundary layer, the direction and magnitudes of

the flow, and the horizontal variation of these boundary

layer properties (Figs. 2a–c and 4c–e). This suggests that

we were justified in neglecting slow variations in slope

and Coriolis parameter in the spirit of a WKB approach.

On the slopes, the solution in (27) predicts a steady

boundary layer that has a thickness much less than the

domain depth, q̂5 qH � 1 (Fig. 4a; cf. appendix C).

The time it takes to set up these steady boundary layers

is short compared to a Rossby wave transit time,

(kq2)21 � bL3/N2H2 or (k̂q̂2)21 � 1 (Fig. 4b). This

time scale is thus much shorter than the time t̂5 1 that

we picked for Figs. 2a–c and 4, so the boundary layers

there have likely reached steady state.

The thickness of the steady boundary layer and the

time scale over which the steady solution is approached

go to infinity where the bottom becomes flat (u/ 0).

On a perfectly flat bottom (u5 0), there is no steady-

state solution. The problem in (26) reduces to a pure

diffusion equation, with solution

b0 5

ffiffiffiffiffiffiffi
4kt

p

r
N2e2z2/(4kt) 2N2zerfc

zffiffiffiffiffiffiffi
4kt

p , (29)

which describes a boundary layer that keeps growing

with time. This is the same scenario as the transient so-

lution with a flat bottom discussed in section 4a, except

that here we have assumed a semi-infinite ocean, so (29)

is required to decay as z/‘ instead of having to satisfy

b5 0 at the surface, as in (20).

Unlike on the slopes, where downward buoyancy

diffusion can be balanced by across-slope upwelling of

dense water, the growth of bottom boundary layers on

the flat part of the basin cannot be arrested locally. The

time scale of the boundary layer evolution becomes so

long, however, that basin-scale processes can enter the

budget. In the steady solutions that include dense water

formation discussed in the next section, lateral advec-

tion of dense water arrests the growth of boundary

layers on flat bathymetry. On the slopes, on the other

hand, the growth of boundary layers is arrested locally

by upwelling along the seafloor.

The simple diffusive boundary layer solution on slopes

also breaks down when the b effect becomes important

in the vorticity budget of the horizontal flow. This occurs

when the horizontal width of the diffusive boundary

layer (q sinu)21 becomes comparable to the Stommel

boundary layer width r/b. This breakdown again occurs

on gentle slopes. With the parameters chosen for our

solution, the b effect is of leading order in the ŷ5 0:5

section between x̂5 0:24 and x̂5 0:76 (Fig. 4).

If mixing is bottom intensified, the structure of the

boundary layer solution changes, consistent with the

results from the full transient solution in the previous

section.With the diffusivity decaying exponentially with

height above the bottom,

k5k
0
e2z0/(dcosu) , (30)

the boundary layer equation in (26) is most easily

solved numerically. As in the case with Fickian

FIG. 3. Steady boundary layer solutions for a constant k̂5 0:01

(blue) and a bottom-intensified profile with k̂0 5 0:1 and d̂5 0:1

(orange). Shown are (a) isopycnals and (b),(c) the across- and

along-slope velocities. Note the two-layer structure in the case

with bottom-intensified mixing. For both cases, ŷ0 5 0:5, r̂5 0:1,

â5 0:2, and â tanû5 1.
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diffusion of momentum (Garrett 1990), an analytical

solution is possible, but the result is unwieldy. The

steady solutions on slopes now have a two-layer

structure (Fig. 3). Isopycnals bend up (b0 , 0) before

dipping down and intersecting the bottom (b0 . 0).

The across-slope velocity is upslope at the bottom

and downslope above, balancing the diffusive flux

convergence near the bottom and its divergence above.

The along-slope flow also reverses sign, as required

by the reversing isopycnal slopes. The up- and down-

slope transports balance exactly—the total transport

vanishes, as required by the integral of (26) in the

slope-normal coordinate and the fact that k/ 0 as

z0 /‘ (Phillips et al. 1986; Garrett et al. 1993).

FIG. 4. Characteristics of the boundary layer and pointwise application of the boundary layer

solution (C21) at t̂5 1 for uniformmixing (k̂5 0:1), in the same configuration as the full solution of

Figs. 2a–c, shown along a zonal section at ŷ5 0:5. (a) The slope-normal steady boundary layer

thickness shown is q̂21, and (b) the time scale of approach to that steady state shown is (k̂q̂2)21.
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On the slopes, this steady boundary layer solution

matches the boundary layers of the full transient solu-

tion (Figs. 2d–f). On the flat parts of the bathymetry, on

the other hand, the boundary layers again are predicted

to grow without limit, and lateral advection by a basin-

scale circulation must enter the budget to reach a

steady state.

6. Steady solutions

The transient solutions discussed above eventually tend

to a homogeneous ocean (b̂5 0) with no flow. In the real

ocean, a deep stratification is believed to bemaintained by

diabatic transformation in the Southern Ocean. Through

the joint effect of winds and mesoscale eddies, deep wa-

ters are brought to the surface, where surface processes

turn them into denser waters that sink to the ocean

bottom: salinification through brine rejection of freezing

seawater and atmospheric cooling. This surface trans-

formation and the circulation along strongly sloping

isopycnals in the Southern Ocean is what prevents the

abyss from becoming a stagnant homogeneous pool.

Here we are interested in the diabatic transformations

away from the surface, which to a large degree occur in

the ocean basins. To keep the problem as tractable as

possible, we dramatically simplify the processes in the

Southern Ocean. Instead of explicitly representing the

wind-driven circulation in a circumpolar channel, we

pretend the effect of this circulation is simply to restore

buoyancy to a particular stratification at the northern

edge of the SouthernOcean and to provide anymass flux

required by the basin circulation. As a substitute for the

effects of wind forcing, eddies, and surface trans-

formations, we thus simply restore buoyancy to a given

stratification N2, which is taken to be constant:

›b

›t
1 u � =b5= � (k=b)2 l(b2N2z) . (31)

The restoring constant l is chosen such that it transitions

from l0 to zero over a distance lt around the latitude ys:

l5
l
0

2

�
12 tanh

y2 y
s

l
t

�
. (32)

We make the restoring fast compared to diffusion by

picking the nondimensional l̂0 5bL3l0/N
2H2 such that

it is about 100 times the average k̂ (Table 1). We choose

ŷs 5 ys/L520:5 and l̂t 5 lt/L5 0:1.

All solutions converge to a steady state. There is no

time dependence in the equilibrated states, consistent

with what Salmon (1990) found across a wide range of

solutions to the planetary geostrophic equations. In

steady state, the water-mass transformation in the basin

is balanced by the restoring in the southern part of the

domain. The restoring adjusts to balance the diabatic

transformation in the basins and thus accepts the net

overturning that is induced by mixing. One could also

consider the opposite experiment: impose in the south a

buoyancy sink and thus net overturning and let the

stratification adjust until mixing balances that trans-

formation. Such an experiment is left to future work.

a. Uniform mixing

Before considering the more realistic case with

bottom-intensified mixing, we discuss uniform mixing

with k̂5 0:01 (and l̂0 5 1). We time step the transient

system, starting from b̂5 ẑ, until the solution has con-

verged to its steady state. This has occurred after one

diffusive time scale t̂5 k̂21 5 100, the longest time scale

in the system, as confirmed by inspecting the time evo-

lution of the volume-averaged buoyancy and the cross-

equatorial overturning (discussed below).

Throughout the basin, the steady-state solution has a

stratification that is not too far from the stratification pre-

scribed in the south (Fig. 5a). Exceptions are a basinwide

benthic layer overlying the flat bottom, in which isopycnals

bend down, and thin boundary layers on slopes.

The boundary layers on slopes have a structure

familiar from the transient solutions and from the

boundary layer theory of section 5 (Figs. 6a–c). As be-

fore, these boundary layers are associated with up- and

along-slope flow. At the base of the sloping topography,

where the bathymetry flattens, the upwelling in the

boundary layers has to be fed by dense water. This is

achieved by a basin-scale circulation that is now present.

This circulation carries dense water north in a boundary

current flowing along the western slope (Figs. 6b and

7a), directly feeds the upwelling on the western bound-

ary, and connects to the upwelling on the eastern

boundary through a zonal current in the benthic layer

(Fig. 6a). The water upwelled on the eastern boundary is

then returned westward by a zonal current above the

benthic layer (Fig. 6a). A southward western boundary

current above the northward one returns the upwelled

water to the south (Figs. 6b and 7a), where the loop is

closed by the transformation to dense water achieved by

the restoring. The western boundary currents are classic

Stommel boundary currents and have a width scaling

with r̂5 0:1.

The upwelling is concentrated in the boundary layers

on slopes, but there is weak widespread interior up-

welling as well (Fig. 6c). This occurs where ›b̂/›ẑ

changes enough in the transition from the weakly

stratified benthic layer to the stratified interior, such that

diffusive fluxes converge, and this does drive a weak

Stommel–Arons-like poleward flow there (Fig. 6b). But
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the full circulation has an important contribution con-

trolled by the boundary layers on slopes, even in this

case with uniform mixing.

A striking feature of this solution—and all steady

solutions discussed in the following—is that isopycnals

are to leading order flat in the interior of the domain.

This is consistent with observations of the real ocean’s

deep hydrography—as seen, for example, in WOCE

sections (Talley 2007)—but it is far from obvious. The

explanation typically given for this observation is that

at a vertical eastern boundary, the no-normal flow

boundary condition through thermal wind requires that

meridional buoyancy gradients vanish and that Rossby

wave radiation carries this signal into the interior. This

argument, however, fails if the eastern boundary is

sloping instead of being vertical. There is then no a

priori restriction on meridional buoyancy gradients

because even with finite zonal shear all the way to the

coast, the flow itself smoothly goes to zero as the depth

goes to zero.

That the stratification is close to that prescribed in the

south—or in the real ocean to that at the northern edge of

the Southern Ocean—is then more usefully understood

as a consequence of the weakness ofmixing. If there were

no mixing (k̂5 0), a steady solution to the equations of

motion would be b̂5 ẑ, that is, a uniform stratification

matching that prescribed in the south and no flow. The

nontrivial solution arising in the presence of mixing can

then be considered a perturbation to this state. This

produces deviations from the uniform stratification, par-

ticularly near the boundaries, and thus drives a circula-

tion. As mixing is small, k̂ � 1, the perturbation to the

b̂5 ẑ state is expected to be small.6

The fact that k̂ � 1 means that Rossby wave radia-

tion across the ocean basin is much faster than diffu-

sion across the full depth of the domain. Rossby waves

can flatten out isopycnals much more effectively than

diffusion can tilt them (except in boundary layers).

That Rossby waves tend to flatten isopycnals is expected

from the energy budget in (A1) and (A2) because all

planetary geostrophic flow releases potential energy:

huzbi52hu � Fi$ 0. This process appears to be suffi-

cient to yield approximately flat isopycnals—the

boundary condition at a fictitious vertical wall in the east

is not required.

The approximate flatness of isopycnals also means

that there are strong meridional gradients of potential

vorticity f›b/›z. In the absence of potential vorticity

sources or sinks in the interior, water parcels thus travel

zonally. To travel meridionally in the overturning cir-

culation, water parcels must adjust their potential vor-

ticity. Since in our solution meridional flow occurs

primarily in boundary layers, this adjustment is easily

achieved by frictional potential vorticity fluxes. In

the real ocean, lateral stirring likely plays a role in the

exchange of potential vorticity with the boundary

(Edwards and Pedlosky 1998), but how this occurs on a

sloping bottom remains insufficiently understood. Since

potential vorticity dynamics do not appear to yield any

deeper understanding of the circulation dominated by

boundary layer flows, we do not discuss them any further.

b. Bottom-intensified mixing

When mixing is bottom intensified, the circulation

becomes even more strongly controlled by the bound-

ary layers on slopes than already was the case with

uniform mixing. We begin with the case k̂0 5 0:1 and

d̂5 0:1, whose transient evolution we considered

above. We integrate the system (with restoring l̂0 5 1)

to t̂5 100, at which point the solution has converged to

its steady state.

The solution has a bulk interior stratification close to

that prescribed in the south, except in a weakly stratified

benthic layer on the flat part of the bathymetry and in

thin boundary layers on the slopes (Fig. 5c). The struc-

ture of the boundary layers on slopes in this equilibrated

solution is familiar from the transient solution and

boundary layer theory: isopycnals slightly slope up be-

fore dipping down, there is strong narrow upwelling on

the slope and weaker but broader downwelling above,

and the along-slope current similarly shows a two-layer

structure (Figs. 6d–f). As with uniform mixing, there is a

basin-scale circulation connecting the eastern boundary

layers on slopes to the western boundary as well as

western boundary currents connecting the circulation to

the dense-water formation in the south (Figs. 6e and 7c).

Western boundary currents are required in order to close

the mass budget because there is little net meridional

transport in boundary layers on slopes—the transports

approximately cancel between the upwelling and down-

welling layers, as expected from boundary layer theory.

TABLE 1. Mixing and restoring parameters as well as run times for

the equilibrating bottom-intensified mixing simulations.

Bottom diffusivity k̂0 Restoring l̂0 Run time t̂

0.025 0.25 200

0.05 0.5 141

0.1 1 100

0.2 2 71

0.4 4 50

0.8 8 35

6 This also suggests that a linear solution may be a reasonable

approximation to the full nonlinear solution. The extent to which

this is true is not further explored here.
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The circulation thus consists of a deep northward

Stommel boundary current on the western slope, upwelling

on the slopes (Figs. 6e and 7c), downwelling above (Fig. 6f),

and a return southward Stommel boundary current at

middepth (Figs. 6e and 7c). The upwelling on the eastern

boundary is supplied with dense water from the western

boundary by an eastward zonal current in the benthic layer

(Fig. 6d). Water downwelled in the east is brought back

west by a westward zonal current just above the benthic

layer (Fig. 6d). A simple schematic of the these flows is

shown in Fig. 8. In addition, there are along-slope currents

in the diffusive boundary layers on slopes (Fig. 6e).

From boundary layer theory, as discussed in the pre-

vious section, the transports up and down the slope are

expected to be equal because k̂ decays to zero away from

the boundary (Fig. 3b). This prediction is roughly con-

sistent with the full solution—we will see in the water-

mass transformation below that there is a large degree of

compensation between up- and downwelling. Because

of this vanishing net boundary layer transport, changes

in slope do not induce any convergences or divergences

of the net across-slope flow, which would drive ex-

changes with the interior (Phillips et al. 1986). This ar-

gument for no exchange with the interior, however, fails

at the base of the sloping topography. There, boundary

layer theory itself fails because no steady boundary layer

solution is possible. Instead, the up- and downwelling on

the slopes must be accommodated by a basin-scale cir-

culation. On the western boundary, Stommel boundary

currents achieve this: they import dense water from the

south at the bottom, and they export more buoyant

water above. For the eastern boundary, zonal currents in

the benthic layer and just above connect the up- and

downwelling to the western boundary currents. It thus

appears that the in- and outflows at the base of the

sloping topography, which are driven by the boundary

layers on the slopes, require a basin-scale flow. Because

these in- and outflows at the base of the sloping topog-

raphy occur at different density classes, they drive a

meridional overturning.

To diagnose more quantitatively the compensation

between up- and downwelling in the boundary layers

on slopes, we perform a water-mass transformation

analysis of the full steady solution with bottom-

intensified mixing (Walin 1982; Garrett et al. 1995;

Marshall et al. 1999; Ferrari et al. 2016). The water-

mass transformation in the Northern Hemisphere is

defined as

FIG. 5. Meridional sections of four steady solutions at x̂5 0:5, showing that the isopycnals (contours) in the interior are relatively flat. In

the weakly stratified benthic layers north of where restoring acts (north of the dashed line), isopycnals slope down, which is associated with

zonal flow (shading). On the slopes, there are boundary layers associated with along-slope flow and dipping isopycnals.

1270 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 48



T̂(â)5 lim
d̂/0

1

d̂

ð
Vd̂(â)

D̂ dx̂ dŷ dẑ , (33)

where D̂ is the (nondimensional) sum of the diabatic

terms on the right of (31), and

V
d̂
(â)5 f(x̂, ŷ, ẑ) j â, b̂(x̂, ŷ, ẑ), â1 d̂ and ŷ. 0g

(34)

is the volume between the isopycnals b̂5 â and

b̂5 â1 d̂, bounded to the south by the equator. The

restoring term very nearly vanishes in any Vd̂(â), so the

only term that significantly contributes to D̂ in (33) is

the diffusive term. Note that T̂(â) corresponds to the

negative of the streamfunction of the zonally integrated

meridional circulation at buoyancy b̂5 â, evaluated at the

equator, as required by continuity. To illustrate the com-

pensation between positive and negative transformations,

we split (33) into positive and negative contributions:

T̂5 T̂1 1 T̂2, where T̂6 are defined by replacing D̂ by

D̂6 in (33), with D̂1 5maxfD̂, 0g and D̂2 5minfD̂, 0g.
The water-mass transformation in the Northern

Hemisphere shows that there is significant compensa-

tion between positive and negative contributions (Fig. 9b).

The two contributions nearly cancel in the upper part of

the water column. This is expected from boundary layer

theory—the transformation is largely confined to bound-

ary layers on slopes. The compensation is instead weaker

deeper down, where boundary layer solutions start

breaking down at the base of the sloping topography, and a

basin-scale circulation feeds the boundary layers (Figs. 6d–f).

As the inflow into the boundary layer occurs at a lower

buoyancy than the outflow, there is now a net positive

transformation. This is the net transformation that leads

to the cross-equatorial flow and thus the net overturning.

We will see in the next section that the boundary layers

on slopes control the magnitude of the in- and outflow

at the base of the sloping topography. The boundary

layer solutions are shown to yield a prediction for the

overturning in our simple bathymetry.

It should be noted that there is some water-mass trans-

formation also in the benthic layer: bottom water experi-

ences buoyancy flux convergence and becomes lighter as it

travels east across the flat part of the basin, and the over-

lying water experiences buoyancy flux divergence and

becomes denser as it travels back west. These trans-

formations in the flat part of the basin very nearly cancel

and therefore do not contribute to the net overturning

strength (Fig. 9b). Instead, they act to shift the net

overturning upward somewhat in buoyancy space.

The net water-mass transformation and thus overturning

is about 0.01 (Fig. 9b). Given the parameters in (18)

and T5 (N2H3/bL)T̂, this corresponds to about 5 Sv

(1 Sv[ 106m3 s21), which is somewhat small compared

to the Lumpkin and Speer (2007) estimate of about

15 Sv in the abyssal Pacific, considering that k̂0 5 0:1

(corresponding to k0 5 1022 m2 s21) is relatively large.

The overturning has the right order of magnitude,

FIG. 6. Zonal sections for the steady solutions with (left) uniform mixing (k̂5 0:01) and (right) bottom-intensified mixing (k̂0 5 0:1;

d̂5 0:1). The flow (shading), in addition to the boundary layer component, now exhibits interior flow and western boundary currents. The

isopycnals (contours) are flat except in the boundary layers and western boundary currents.
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however, which is all we can expect given the idealized

nature of this study.

It is customary to display the net meridional over-

turning using an overturning streamfunction defined

by zonal averages in buoyancy space. The structure

of this streamfunction, mapped back into physical

space, resembles observational estimates (Fig. 10; cf.

Lumpkin and Speer 2007). When displaying such

zonal averages, however, it should be kept in mind

that the net upwelling is a residual of large up- and

downwelling flows on the slopes. The circulation

sketched in Fig. 8 is only partially visible in the

overturning streamfunction.

7. Predicting the overturning

The phenomenology of the circulation that arises in

response to bottom-intensified mixing suggests that the

boundary layers on slopes exert a strong control on the

circulation. The net overturning circulation appears to

result from the net transformation in the boundary

layers. This net transformation occurs at the base of the

sloping topography, where the boundary layers are fed

with inflow that is denser than the outflow above. If the

magnitude of these in- and outflows is determined by

the boundary layer solutions on the slopes, we can in-

tegrate these solutions along the perimeter of the basin

and get an estimate of the overturning.

We thus obtain a prediction for the cross-equatorial

overturning:

Î
ẑ
5

ð
Gẑ

ðẑ�0
0

û
�̂x d�̂z dŝ with the boundary layer solution

û
�̂z from ð22Þ–ð24Þ , (35)

where Gẑ is a particular depth contour, confined to the

Northern Hemisphere, ẑ� is the slope-normal coordinate,

ẑ�0 is where ûx̂
�

changes sign, and ŝ is an along-contour co-

ordinate. The boundary layer solution is obtained by nu-

merically solving for the steady state of the boundary layer

equations (22)–(24) at every point along the depth con-

tour, using the local slope and local latitude. The boundary

layer solutions and thus Î ẑ can be calculated without any

input from the full solutions because the interior strat-

ification remains close to that prescribed in the south,

so the far-field stratification is an external parameter.

To test this prediction, we obtain a range of steady

numerical solutions by varying k̂0 from 0.025 to 0.8,

keeping d̂5 0:1 fixed (Table 1). The time it takes for the

numerical solutions to converge to a steady state roughly

varies with k̂21/2
0 . All solutions have converged by the

time chosen for diagnosis.

Across the explored range of k̂0 values, the solutions

retain the structure described in section 6b. The smaller

the k̂0, the thinner the weakly stratified benthic layer

(Figs. 5b–d). The water-mass transformation is then in-

creasingly compensated and the net transformationmoves

to a narrow density range near the bottom (Fig. 9). Con-

sistently, the cross-equatorial flow becomes progressively

confined to a thin layer above the bottom (Figs. 5b–d).

The boundary layers on slopes are also thinner, the

smaller the k̂0, as expected from boundary layer theory

FIG. 8. Schematic of the circulation in a zonal section: shown are

the up- and downwelling dipoles on the slopes, zonal currents

connecting the eastern slope to the western boundary, and

boundary currents that supply dense water at depth and export

lighter water above. Not shown are the along-slope currents in the

boundary layers on slopes.

FIG. 7. Zonal sections of cross-equatorial flow in four steady

solutions with uniform and bottom-intensified mixing. The

boundary layers on slopes have no associated flow at ŷ5 0, so the

only features seen are the western boundary currents (shading).

Note that with decreasing bottom diffusivity k̂0, the western

boundary currents become increasingly squeezed to the bottom.

1272 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 48



(Figs. 5b–d and 11a). The interior retains a stratification

close to that prescribed in the south (Figs. 5b–d).

The prediction in (35) compares well with the diagnosed

cross-equatorial overturning maxâT̂(â) from (33), both in

magnitude and in the scaling with k̂0 (Fig. 11b). There is

only a weak dependence of the prediction in (35) on what

depth contour Gẑ is chosen, as long as that depth contour is

above the weakly stratified benthic layer. The overturning

roughly scales with k̂1/2
0 , but there is some curvature.

The success in predicting the net transforma-

tion with boundary layer theory confirms that the

boundary layers on slopes control much of the cir-

culation. While the net transformation occurs at the

base of the sloping topography, where the boundary

layer solutions break down, the flow there appears to

be slaved to the boundary layer flows on the slopes

above.

This also suggests that the transformation in the

benthic layer, even if mixing is (unrealistically) strong

there, has little effect on the net overturning. To test this

assertion, we performed an additional simulation with

mixing coefficients reduced by an order of magnitude

over the flat part of the bathymetry, with the rest of the

setup identical to the reference case with bottom-

intensified mixing. The scaling argument predicts the

same overturning strength, because it depends on the

mixing on the slopes only, which is unchanged. This

prediction is borne out in the additional simulation:

the benthic layer becomes more stratified and the

overturning circulation shifts downward somewhat in

buoyancy space (Fig. 9d), but neither the shape nor

the strength of the overturning circulation changes

substantially compared to the case with enhanced

mixing everywhere. This again confirms the tight

control of the overturning circulation by the boundary

layers on slopes.

8. Friction dependence

The control of the overturning by boundary layers on

slopes and the crucial role that friction plays in these

boundary layers raises the question of how the circulation

FIG. 9. Water-mass transformation in the Northern Hemisphere for the steady solutions. Shown is the net transformation T̂ and its

partition into positive and negative contributions T̂1 and T̂2. Note the compensation in the upper part of the water column and the

dominance of positive transformations near the bottom.Additionally shown in (b) is T̂ with the contribution from the flat part of the basin

(locations where the depth exceeds 0.95) excluded (red curve).

FIG. 10. Overturning streamfunction (zonally averaged in buoyancy coordinates and remapped to physical space) of the steady solution

with bottom-intensified mixing (k̂0 5 0:1). The contour interval is 0.02 and negative values imply counterclockwise circulation.
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depends on friction. The control of the circulation by

boundary layers is different from the situation in Stommel–

Arons theory or in linear gyre theory, where boundary

currents are passive and simply close the mass budget as

required by interior transport.

Unlike the diffusivity k̂, which directly relates to ob-

servable buoyancy flux divergences achieved by small-

scale turbulence, the friction parameter r̂ is quite arbitrary

and relies on the heuristic representation of turbulent

processes by Rayleigh friction. We discuss the depen-

dence of the circulation on this parameter to get a sense

for the sensitivity of our solutions.

We obtain two additional full steady solutions with r̂

changed from 0.1 to 0.05 and 0.2, keeping all other pa-

rameters the same as in the bottom-intensified mixing

case with k̂0 5 0:1 discussed in section 6b. The qualitative

structure of the circulation remains unchanged across

these solutions. The boundary layers on slopes respond to

the change in friction in the way expected from boundary

layer theory (Figs. 12a,b). Away from the equator, where

f� r or ŷ � r̂, boundary layers on slopes become thinner

and upslope velocities are enhanced as the friction pa-

rameter is increased. Near the equator, where f � r or

ŷ � r̂, boundary layers on slopes become thicker and

upslope velocities are reduced. This compensation be-

tween boundary layer thickness and upslope velocities

appears to result in the upslope transports being relatively

insensitive to changes in r̂. Across these solutions, west-

ern boundary currents carry about the same transport,

and they have widths that scale with the Stommel

boundary layer width r̂, as expected.

As a consequence, the cross-equatorial overturning

is also relatively insensitive to the value of friction

(Fig. 12c). This weak dependence of the overturning is

expected from the behavior of upslope transports in

boundary layers on slopes, as confirmed by the contour

integral in (35) (Fig. 12c). The friction dependence in the

full solutions is even smaller than that predicted by

boundary layer theory.

The results of this section suggest that our solutions are

relatively insensitive to the value of friction, both in the

qualitative structure of the circulation and in the net over-

turning. It should be kept inmind, however, that thismay be

particular to the Rayleigh friction used in these solutions.

The control of the circulation by boundary layers on slopes

suggests that a better understanding of the actual turbulent

momentum transport in these boundary layers should be

sought in future work. Preliminary results suggest that the

qualitative nature of boundary layers on slopes is likely ro-

bust, but the magnitude of the up- and downwelling dipole

can be quite sensitive to the choice of momentum closure

(J. Callies 2018, unpublishedmanuscript). One-dimensional

boundary layer solutions with a Fickian momentum flux

closure producemuch tooweak a stratification compared to

observations, which would give much too weak a dipole in

buoyancy flux divergence and thus in up- and downwelling.

This inconsistency argues for more complicated three-

dimensional dynamics in the balances of boundary layers

on slopes, which should be explored in future work.

9. Discussion

The solutions to the planetary geostrophic equations in

an idealized ‘‘bathtub geometry’’ with an idealized distri-

bution of bottom-intensified mixing exhibit an abyssal

circulation that is tightly controlled by diffusive boundary

FIG. 11. Scaling of the overturning transport: (a) boundary layer solutions for different values of bottom diffu-

sivity k̂0 and (b) upslope transport from boundary layer solutions (integrated along different depth contours in the

Northern Hemisphere) vs cross-equatorial overturning of the full solutions.
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layers on slopes. The up- and downwelling in these

boundary layers on slopes drives a basin-scale circulation

and overturning because the inflow at the base of the

sloping topography is denser than the outflow above. Zonal

currents connect these in- and outflows at the base of the

sloping topography to the western boundary, where Stom-

mel boundary currents transport the water meridionally. A

simple schematic of this circulation is shown in Fig. 8.

Boundary layer theory captures the structure of the diffu-

sive boundary layers on slopes, and integrating the upslope

transport of these boundary layer solutions along the pe-

rimeter of the basin yields a prediction for the overturning.

Our idealized solutions are instructive for understanding

the abyssal circulation in the real ocean, but a number of

complications must be considered to bridge that gap.

First, the representation of the Southern Ocean is

obviously simplistic. This choice was motivated by the

intention tokeep the systemas simple aspossible and todirect

the focus on the dynamics in the basin. This simplification

defers the question of what sets the stratification at the

northern edge of the SouthernOcean, aswell as the question

ofwhether thebasindynamicsmight affect that stratification.

The point of view taken here is that this stratification is in-

dependent of the basin dynamics because Southern Ocean

dynamics are much faster than the diffusive dynamics in the

basins. But in reality, the water-mass transformation in the

basin must be matched by surface transformation in

the Southern Ocean, and the circulation and stratification

must arrange themselves to satisfy that balance. These dy-

namics are excluded from the setup studied here.

Second, the real ocean’s bathymetry is much more

complicated than the ‘‘bathtub geometry’’ considered here.

There aremidocean ridges, deep basins, fracture zones, and

other geologic features. This complex bathymetry compli-

cates the circulation considerably by steering the flow to-

pographically and by changing where mixing is enhanced.

For example, midocean ridges allow boundary currents

along their western flanks; midocean ridges and seamounts

can enhance mixing to middepth, and they may also affect

the circulation differently than the slopes on the sides that

come all the way to the surface. It seems likely that the

circulation on many of these bathymetric features has

characteristics captured by boundary layer theory, such that

elements of the circulation described here carry over to the

more complicated case. But whether a simple integration

along depth contours can predict the overturning in

more complex geometry remains unclear. The shape of

bathymetry probably also affects the degree to which there

is compensation between transformation to light and dense

water (cf. McDougall 1989; McDougall and Ferrari 2017;

Holmes et al. 2018), which may account for the larger de-

gree of compensation estimated for the real ocean by

Ferrari et al. (2016) and de Lavergne et al. (2017).

Third, the stratification we restore to in the south is

unrealistically constant. The real stratification in the

abyss is closer to exponential, which changes how much

buoyancy flux convergence or divergence there is in the

real ocean’s interior. That said, observations suggest

that the buoyancy flux is divergent in the interior (Polzin

et al. 1997; St. Laurent et al. 2001; Waterhouse et al.

2014), such that the dynamics should qualitatively be

similar to the bottom-intensified case considered here.

Fourth, diabatic transformation in the real ocean ap-

pears to be confined to regions with strong flow over a

rough bottom. It is thus expected that boundary layer

flows are significant in such locations only, and that the

basin-scale circulation is forced more heterogeneously

than in the case with uniformly bottom-intensified

mixing discussed here. The uniformly strong bottom

value employed here is certainly unrealistic.

Fifth, the neglect of inertia, while drastically simplifying

the dynamics, comes at the cost of preventing a whole host

FIG. 12. Friction dependence of the overturning transport:

(a) boundary layer solutions away from the equator (ŷ5 0:5) for

different values of r̂, showing increasing across-slope transports as r̂

is decreased; (b) boundary layer solutions at the equator (ŷ5 0) for

different values of r̂, showing decreasing across-slope transports as

r̂ is decreased; and (c) upslope transport from boundary layer so-

lutions (integrated along different depth contours in the Northern

Hemisphere) vs cross-equatorial overturning of the full solutions.
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of physics, from recirculation gyres to time-dependent eddy

dynamics. Particularly near the equator and in the western

boundary currents, inertial effects may be important. The

western boundary currents obtained here are forced to close

the mass balance, similar to those postulated by Stommel

and Arons (1960b) or those in linear gyre theory. But these

boundary currents may be nothingmore than caricatures of

the boundary currents of the real ocean. Eddy stirring of the

boundary layers on slopes may also be important.

Sixth, the physics of theboundary layers on slopes depend

on the chosen form of friction and, more generally, on

the physics of the small-scale flows. The boundary layers in

our solutions assume a particularly simple form because

Rayleigh friction is used, but they would be different in

character if a Fickian closure for the momentum flux was

used instead. The boundary layers are constrained to bal-

ancing the diffusive water-mass transformation with across-

slope advection, but the degree to which the stratification

and thus the diffusive fluxes are altered, depends on friction.

The net overturning in our solutions is relatively insensitive

to the value of friction, but that may be specific to Rayleigh

friction. How the true time-dependent flows in bottom

layers on rough slopes transport buoyancy and momentum

is largely unclear. The control these bottom layers appear to

exert on the abyssal circulation—they are not passive like

western boundary currents in Stommel–Arons or linear

gyre theory—suggests that more detailed understanding of

the small-scale near-bottom dynamics is key to making

progress.

We hope that despite these gaps to reality, the dy-

namics described here are instructive for understanding

the abyssal circulation of the real ocean. It seems likely

that elements of the solutions—in particular the control

by boundary layers on slopes—survive in the full system.

At the very least, the solutions illustrate that relaxing the

assumptions made by Stommel and Arons (1960b) dra-

matically changes the abyssal circulation.
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APPENDIX A

Energy Budget

The energy budget of the system (4)–(6) is diagnostic

in kinetic energy and prognostic in the potential energy

P 5 2zb:

= � (up)5uzb1 u � F, and (A1)

›P

›t
1= � (uP)52uzb2 z= � (k=b) . (A2)

If restoring to a prescribed stratification in the south is

present, an additional term representing the loss of po-

tential energy in the restoring region appears on the

right of (A2). In planetary geostrophic dynamics, any

production of kinetic energy through uzb is in-

stantaneously balanced by friction; this balance is non-

local, however, because pressure work redistributes

kinetic energy. Potential energy is created by the dia-

batic term, lost to kinetic energy through buoyancy

production, and redistributed advectively. Upon in-

tegration over the domain, indicated by angle brackets,

we find 2hz= � (k=b)i5 hk›b/›zi if the bottom is in-

sulating and the top is at z5 0. In the absence of wind

forcing and restoring, this term represents the only

source of energy for the system. It is always a source

because ›b/›z. 0 in stable stratification. Even though

diffusion does not generate kinetic energy directly, we

thus speak of a diffusively driven circulation.

It should be noted that the fact that hk›b/›zi. 0 does

not necessarily imply that a circulation is generated: if

isopycnals are flat and remain flat, the potential energy

generation is balanced by the tendency term—none of

the generated potential energy is available for release

(see section 4a). This situation, however, cannot occur

in a steady state, and it cannot occur if the ocean bottom

is sloping (see section 4b).

APPENDIX B

Planetary Geostrophic Equations in
Terrain-Following Coordinates

a. Transformation to terrain-following coordinates

This appendix expresses (4)–(6) in terrain-following

coordinates. We employ the notation of tensor calculus

(e.g., Grinfeld 2013), which minimizes the amount of

algebraic manipulation, helps identify the correct

transformed components of the velocity vector, and

easily yields expressions for buoyancy diffusion in flux

form for arbitrary coordinates.

We begin by transforming the momentum, continuity,

and buoyancy equations to the dimensional terrain-

following coordinates:

j5 x, h5 y, s5
z

h
. (B1)

In a second step, we will transform to the non-

dimensional coordinates in (19). One could do these
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transformations in one step, but the exposition is a bit

clearer if this is done one step at a time.

The covariant metric tensor for terrain-following co-

ordinates is

(g��)5

0
BB@

11s2h2
x s2h

x
h
y

sh
x
h

s2h
x
h
y

11s2h2
y sh

y
h

sh
x
h sh

y
h h2

1
CCA , (B2)

where hx and hy are the bottom slopes; everywhere else

partial derivatives are written out. The contravariant

metric tensor is the matrix inverse:

(g��)5

0
BBB@

1 0 2sh
x
/h

0 1 2sh
y
/h

2sh
x
/h 2sh

y
/h 11s2 h2

x 1 h2
y

	 
h i
/h2

1
CCCA .

(B3)

The volume element
ffiffiffi
g

p
5h is the square root of the

determinant of (g��).
We now write the momentum equation (4) in co-

variant form. Noting that the contravariant components

of the vertical unit vector are zj 5 0, zh 5 0, and zs 5 1/h

yields the covariant components of the cross product

z3 u:

«
jjk
zjuk 52uh, «

hjk
zjuk 5 uj, «

sjk
zjuk 5 0, (B4)

where « is the Levi–Civita symbol. The contravariant

velocity components transform as

uj 5 ux, uh 5 uy, us 5
uz 2sh

x
ux 2sh

y
uy

h
,

and the covariant components of friction become

F
j
52ruj, F

h
52ruh, F

s
5 0: (B5)

Furthermore using zj 5shx, zh 5shy, and zs 5 h for the

buoyancy term, the covariant components of the mo-

mentum equation (4) become

2fuh 52
›p

›j
1sh

x
b2 ruj , (B6)

fuj 52
›p

›h
1sh

y
b2 ruh, and (B7)

hb5
›p

›s
, (B8)

where we also used that the components of the covariant

derivative of a scalar, in this case pressure, are simply its

partial derivatives. These equations could also have

been derived from the Cartesian form of the equations

using the chain rule. But the true power of tensor calculus

becomes apparent when writing the continuity equation

(5) and the buoyancy equation (6) in terrain-following

coordinates. We make use of the Voss–Weyl formula for

the divergence of a vector field A:

= �A5
1

h

�
›

›j
(hAj)1

›

›h
(hAh)1

›

›s
(hAs)

�
. (B9)

The continuity equation (5) thus simply reads

›

›j
(huj)1

›

›h
(huh)1

›

›s
(hus)5 0: (B10)

In the buoyancy equation (6), the advective term, writ-

ten as a flux divergence, becomes

= � (ub)5 1

h

�
›

›j
(hujb)1

›

›h
(huhb)1

›

›s
(husb)

�
.

(B11)

The diffusive term has the same form of a flux di-

vergence, with the diffusive fluxes being

2k=jb52k

�
›b

›j
2

sh
x

h

›b

›s

�
, (B12)

2k=hb52k

�
›b

›h
2

sh
y

h

›b

›s

�
, and (B13)

2k=sb52k

2
411s2 h2

x 1 h2
y

	 

h2

›b

›s
2
sh

x

h

›b

›j
2

sh
y

h

›b

›h

3
5 ,

(B14)

which follows from =ib5 gij=jb.

The main drawbacks of the terrain-following co-

ordinates are that buoyancy terms appear in the mo-

mentum equations in (B6) and (B7) because zj and zh
are nonzero and that cross terms are introduced in the

diffusive fluxes in (B12)–(B14) because the metric ten-

sor is not diagonal. These drawbacks are balanced by the

simplicity of the boundary conditions: the no-normal

flow condition simply becomes us 5 0 at s521 and

s5 0, and the no-flux condition on buoyancy becomes

=sb5 0 at s521. Both of these conditions are easily

implemented in our finite-difference scheme because

these fluxes are located at s faces.

b. Depth-integrated flow and thermal wind

To calculate the depth-integrated flow, we solve a

two-dimensional elliptic problem for the streamfunction

of the integrated flow c:
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h

ð0
21

uj ds52
›c

›h
, h

ð0
21

uh ds5
›c

›j
. (B15)

Cross-differentiating the integrated horizontal momen-

tum equations in (B6) and (B7) gives

›

›j

�
r

h

›c

›j

�
1

›

›h

�
r

h

›c

›h

�
2

›

›j

�
f

h

›c

›h

�
1

›

›h

�
f

h

›c

›j

�

52
›

›j
(h

y
g)1

›

›h
(h

x
g) ,

(B16)

where

g52

ð0
21

sb ds . (B17)

The right-hand side of (B16) is the joint effect of

baroclinicity and relief (JEBAR) term. Given a

buoyancy field b and c5 0 on all coasts, (B16) can be

solved for c. If there was wind forcing or other im-

posed upwelling, additional forcing terms would ap-

pear in (B16). If there were no stratification (b5 0) or

no bathymetry (hx 5 hy 5 0), the JEBAR term would

vanish and the depth-integrated flow could be de-

termined from (B16) alone (Welander 1968). In the

more general case considered here, the buoyancy field

must be known.

We must add the baroclinic component to the depth-

independent flow obtained from (B16). The baroclinic

component is obtained from the frictionally modified

thermal wind equations:

f 2 1 r2
� � ›uj

›s
52f

�
h
›b

›h
2sh

y

›b

›s

�
2 r

�
h
›b

›j
2sh

x

›b

›s

�
,

and

f 21r2
� � ›uh

›s
5 f

�
h
›b

›j
2sh

x

›b

›s

�
2 r

�
h
›b

›h
2sh

y

›b

›s

�
,

(B18)

which are the result of differentiating and combining

(B6)–(B8). With the horizontal flow completely de-

termined, we can then integrate the continuity equation

(B10) from us 5 0 at s521 to obtain us. The complete

flow is thus obtained from a given buoyancy field.

c. Nondimensional equations in terrain-following
coordinates

For completeness, we now list the equations in the

nondimensional terrain-following coordinates defined

by the transformation

j5Lĵ, h5Lĥ, s5 ŝ . (B19)

With h5Hĥ and the substitutions in (10), we have

uj 5
N2H2

bL2
ûĵ, uh 5

N2H2

bL2
ûĥ, us 5

N2H2

bL3
ûŝ , (B20)

and define consistently

c5
N2H3

bL
ĉ, g5N2Hĝ . (B21)

The depth-integrated flow

ĥ

ð0
21

ûĵ dŝ52
›ĉ

›ĥ
, ĥ

ð0
21

ûĥ dŝ5
›ĉ

›ĵ
(B22)

is then obtained from

›

›ĵ

�
r̂

ĥ

›ĉ

›ĵ

�
1

›

›ĥ

�
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ĥ

›ĉ
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›

›ĵ
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›ĥ
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›ĉ

›ĵ
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52
›

›ĵ
ĥ
ŷ
ĝ

	 

1

›

›ĥ
ĥ
x̂
ĝ

	 

,

(B23)

where

ĝ52

ð0
21

ŝb̂ dŝ . (B24)

Thermal wind reads

ŷ2 1 r̂2
� � ›ûĵ

›ŝ
52ŷ

 
ĥ
›b̂

›ĥ
2 ŝĥ

ŷ

›b̂

›ŝ

!
2 r̂

 
ĥ
›b̂

›ĵ
2 ŝĥ

x̂

›b̂

›ŝ

!
,

and

(B25)

ŷ2 1 r̂2
� � ›ûĥ

›ŝ
5 ŷ

 
ĥ
›b̂

›ĵ
2 ŝĥ

x̂

›b̂

›ŝ

!
2 r̂

 
ĥ
›b̂

›ĥ
2 ŝĥ

ŷ

›b̂

›ŝ

!
,

(B26)

and the continuity equation becomes

›

›ĵ
ĥûĵ
	 


1
›

›ĥ
ĥûĥ
	 


1
›

›ŝ
ĥûŝ
	 


5 0: (B27)

The nondimensional buoyancy equation is

›b̂

›t̂
1= � ûb̂

	 

5H2= � k̂=b̂

	 

, (B28)

where the advective term is simply
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= � ûb̂
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�
›

›ĵ
ĥûĵ
	 


1
›

›ĥ
ĥûĥ
	 


1
›

›ŝ
ĥûŝ
	 
�

, (B29)

and the diffusive fluxes are

2H2k̂=ĵb̂52â2k̂

 
›b̂

›ĵ
2

ŝĥ
x̂

ĥ

›b̂

›ŝ

!
, (B30)

2H2k̂=ĥb̂52â2k̂
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ĥ
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›ŝ

!
, and (B31)

2H2k̂=ŝb̂

52k̂

2
411 â2ŝ2(ĥ2

x̂ 1 ĥ2
ŷ)

ĥ2

›b̂

›ŝ
2
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ĥ
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›ĵ
2

â2ŝĥ
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ĥ

›b̂

›ĥ

3
5 .

(B32)

APPENDIX C

Nondimensional Boundary Layer Equations

We include some detail of the transformation to a

slope-aligned coordinate system in nondimensional

form because there are a few quirks introduced by the

squeezing of the system in the horizontal. This means

that angles are not preserved, and a geometric factor

arises in the nondimensional equations.

The transformation is

�ẑ5
x cosû

L
1

z sinû

H
, �̂y5

y

L
,

�ẑ52
x sinû

L
1

z cosû

H
, (C1)

and its inverse is

x5L(�x̂ cosû2 �ẑ sinû), y5L�̂y,

z5H(�x̂ sinû1 �ẑ cosû) , (C2)

where û is the slope angle in the nondimensional co-

ordinates and is related to the true slope angle u through

â tanû5 tanu. This transformation yields the covariant

metric tensor

(g��)5

2
64L

2 cos2û1H2 sin2û 0 2(L22H2) cosû sinû

0 L2 0

2(L21H2) cosû sinû 0 H2 cos2û1L2 sin2û

3
75

(C3)

and the contravariant metric tensor

(g��)5

2
6666666664

cos2û

L2
1

sin2û

H2
0

�
1

H2
2

1

L2

�
cosû sinû

0
1

L2
0

�
1

H2
2

1

L2

�
cosû sinû 0

cos2û

H2
1

sin2û

L2

3
7777777775
.

(C4)

The volume element is
ffiffiffi
g

p
5L2H. The vertical unit

vector now has contravariant components

z
�x̂ 5

sinû

H
, z

�ŷ 5 0, z
�ẑ 5

cosû

H
(C5)

and covariant components

z �x̂
5H sinû, z �ŷ

5 0, z �ẑ
5H cosû . (C6)

The covariant components of friction are

F �x̂
52rL2 cosû u

�x̂cosû2 u
�ẑsinû

	 

, (C7)

F �ŷ
52rL2u

�ŷ, and (C8)

F �ẑ
5 rL2 sinû u

�x̂cosû2 u
�ẑsinû

	 

, (C9)

and the momentum equations, making use of the sub-

stitutions (10), become

2ŷ
0
û

�ŷ cosû52
›p̂

›�x̂
2 r̂ cosû û

�x̂cosû2 û
�ẑsinû

	 

1 b̂ sinû ,

(C10)

ŷ
0
û

�x̂cosû2 û
�ẑsinû

	 

52

›p̂

›ŷ�
2 r̂û

�ŷ, and (C11)

ŷ
0
û

�ŷ sinû52
›p̂

›�ẑ
1 r̂ sinû û

�x̂cosû2 û
�x̂sinû

	 

1 b̂ cosû .

(C12)

Splitting buoyancy and pressure into a background state

and a perturbation,

b5N2z1 b0 5N2H �x̂ sinû1 �ẑ cosû1 b̂0
	 


, and

(C13)

p5
1

2
N2z2 1 p0 5N2H2[1/2(�x̂ sinû1 �ẑcosû)2 1 p̂0 ] ,

(C14)

and assuming no variations along the slope, û
�̂z 5 0,

b̂0 5 b̂0(ẑ�), and p̂0 5 p̂0(ẑ�) then simplifies the across- and

along-slope momentum equations to
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ŷ
0
û

�x̂ cosû52r̂û
�ŷ, and (C15)

2ŷ
0
û

�ŷ cosû52r̂û
�x̂ cos2û1 b̂0 sinû , (C16)

and the buoyancy equation becomes

›b̂0

›t̂
1 û

�x̂ sinû5
›

› �ẑ

(
k̂

"
cosû1 (cos2û1 â2 sin2û)

›b̂0

›ẑ�

#)
.

(C17)

Substituting ûx̂� from themomentum equations yields the

nondimensional version of (26):

›b̂0

›t̂
1

r̂ tan2û

ŷ20 1 r̂2
b̂0 5

›

›�ẑ

n
k̂

h
cosû1 cos2û1 â2 sin2û

� � ›b̂0

›�ẑ

io
.

(C18)

The insulating boundary condition at �̂z5 0 becomes

cosû1 cos2û1 â2 sin2û
� � ›b̂0

›�ẑ
5 0: (C19)

Note the appearance of the geometric factor

u5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2û1 â2 sin2û

p
, (C20)

which results from the horizontal squeezing of the do-

main when going to nondimensional coordinates.

The analytical solution for uniform mixing now reads

b̂0 5
cosû

uq̂

�
e2(q̂ �ẑ)/u 2

1

2

h
e2(q̂ �ẑ)/u erfc

	
q̂
ffiffiffiffiffi
k̂t̂

p
2

�ẑ

2u
ffiffiffiffiffi
k̂t̂

p



1 e(q̂
�ẑ)/uerfc

	
q̂
ffiffiffiffiffi
k̂t̂

p
1

�ẑ

2u
ffiffiffiffiffi
k̂t̂

p

i�

, (C21)

where

q̂5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂ tan2û

k̂(ŷ20 1 r̂2)

s
. (C22)

For bottom-intensified mixing,

k̂5 k̂
0
e2(z2xtanu)/d 5 k̂

0
e2

�ẑ/(d̂cosû) , (C23)

and numerical solutions are obtained by solving

the steady-state version of (C18) using finite differences.
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