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ABSTRACT

Baroclinic mixed-layer instabilities have recently been recognized as an important source of submesoscale

energy in deep winter mixed layers. While the focus has so far been on the balanced dynamics of these

instabilities, they occur in and depend on an environment shaped by atmospherically forced small-scale

turbulence. In this study, idealized numerical simulations are presented that allow the development of both

baroclinic instability and convective small-scale turbulence, with simple control over the relative strength. If

the convection is only weakly forced, baroclinic instability restratifies the layer and shuts off convection, as

expected. With increased forcing, however, it is found that baroclinic instabilities are remarkably resilient to

the presence of convection. Even if the instability is too weak to restratify the layer and shut off convection,

the instability still grows in the convecting environment and generates baroclinic eddies and fronts. This

suggests that despite the vigorous atmospherically forced small-scale turbulence in winter mixed layers,

baroclinic instabilities can persistently grow, generate balanced submesoscale turbulence, and modify the

bulk properties of the upper ocean.

1. Introduction

Atmospheric cooling and surface winds frequently mix

the surface layer of the ocean. The resulting mixed layer

mediates the transfer of heat and momentum between

the atmosphere and ocean and thereby affects both the

atmospheric climate and the oceanic general circulation.

The evolution of the ocean mixed layer has traditionally

been understood column by column; atmospheric cooling

and wind forcing leads to mixing and deepening of the

mixed layer into the thermocline below. It is becoming

increasingly clear, however, that lateral exchanges con-

tribute crucially to the dynamical balances of the

mixed layer.

Baroclinic instability in the mixed layer, one such

agent of lateral exchange, can achieve large vertical

buoyancy fluxes by laterally sliding light over dense

water, tending to restratify the mixed layer (e.g., Spall

1995; Haine and Marshall 1998; Boccaletti et al. 2007;

Fox-Kemper et al. 2008). This restratification modifies

the surface properties and thereby feeds back on the

surface fluxes of heat and momentum. Baroclinic eddies

can also achieve exchanges between themixed layer and

the thermocline below—a process that may be impor-

tant in subducting heat and atmospheric constituents

like carbon into the thermocline as well as bringing

nutrients up into the mixed layer, where they can be

used for photosynthesis (e.g., Thomas et al. 2008).

The balanced dynamics of baroclinic mixed-layer

instabilities suggest they should undergo a seasonal

cycle, following the seasonal evolution of the mixed

layer itself. The instabilities are expected to be stronger

in deep winter mixed layers, in which isopycnals are

steep and large amounts of potential energy are avail-

able for conversion to kinetic energy. The instability

scale, which also scales with the mixed-layer depth, is of

order 1–10 km in winter, suggesting these submesoscales

should be energized by wintertime baroclinic mixed-

layer instabilities. In summer, on the other hand, when

mixed layers are shallow, baroclinic instabilities are

expected to be much weaker and to occur at much

smaller scales.

Observations and models indeed show an energization

of submesoscale turbulence (scales of order 1–10km) inCorresponding author: Jörn Callies, jcallies@caltech.edu
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deep winter mixed layers (Mensa et al. 2013; Shcherbina

et al. 2013; Sasaki et al. 2014; Callies et al. 2015). The

observed characteristics are consistent with a simple

model of the balanced dynamics of baroclinic mixed-

layer instabilities and the geostrophic turbulence gener-

ated by them (Callies et al. 2016). In summer, in contrast,

flows 1–10km in scale carry much less energy and appear

to be dominated by thermocline dynamics. It is unclear

whether mixed-layer instabilities are damped out in

summer because mixing time scales are short in shallow

mixed layers or whether they still occur at small scales but

are not strong enough to feed a turbulent energy transfer

to larger scales and significantly energize the observed

1–10-km scales.

We here seek to go beyond simple arguments based

on balanced dynamics because the mixed layer is a place

of vigorous atmospherically forced small-scale turbu-

lence. Can baroclinic instabilities grow while the mixed

layer is being actively mixed? Or is the instability

arrested by mixing and can only develop between mix-

ing events? Is the instability shut off in shallow summer

mixed layers?

The goal of this study is thus to delineate the conditions

under which baroclinic instability can grow in a turbulent

mixed layer. This can help us understand when mixed-

layer instabilities are able to energize submesoscales and

thereby affect the bulk properties of the upper ocean.We

employ an idealized setup that allows the development of

both baroclinic instabilities and forced convection in a

layer of Boussinesq fluid. The strength of the baroclinic

instability is controlled by a prescribed lateral buoyancy

gradient, and the strength of convection is controlled

by an imposed buoyancy flux at the top and bottom

boundaries.

In the limit of weak buoyancy forcing at the top and

bottom, it is expected that baroclinic instabilities restratify

the mixed layer and thus shut off convection (Mahadevan

et al. 2010). This is confirmed in our simple setup. But we

find that, conversely, baroclinic growth is not arrested in

the limit of strong convection. When baroclinic fluxes are

too weak to oppose the destabilization of the forcing, too

weak to restratify the layer, baroclinic eddies and fronts

still emerge and coexist with the convection that actively

mixes the fluid. The baroclinic eddies and fronts organize

the convection andmodify the bulk properties of the layer.

2. Approach

To study the competition between baroclinic in-

stabilities and convection, we depart from previous

studies of baroclinic mixed-layer instabilities that con-

sidered the transient spindown of a mixed-layer front. In

such simulations, the front slumps under the effect of

baroclinic eddies and the mixed layer quickly restratifies

(e.g., Haine and Marshall 1998; Boccaletti et al. 2007).

There is a succession from upright or slantwise convec-

tion to baroclinic eddies as the stratification and hence

the Richardson number increase, a succession that is

expected from linear stability analysis (Stone 1966).

Convection and baroclinic eddies do not coexist in these

simulations because the restratification by baroclinic

eddies shuts off convection.

Mahadevan et al. (2010) attempted to achieve equi-

librium between the destabilizing effect of surface forcing

and the restratifying effect of baroclinic eddies by

blowing a wind down a mixed-layer front. The Ekman

transport of such a down-front wind pushes dense over

light water, destabilizing the surface layers (Thomas and

Lee 2005). The destabilizing effect of this forcing evolves

with the flow, however, because whether the Ekman

transport is destabilizing depends on the orientation of

the front, which under the influence of baroclinic in-

stability starts to meander. The simulations described in

Mahadevan et al. (2010) were thus necessarily transient;

equilibrium was not achieved, because the increasing

misalignment of front and wind stress reduced the ef-

fective buoyancy forcing. In the setup described below,

we instead use direct buoyancy forcing, which allows us

to control the forcing strength and achieve a statistical

equilibrium. We can thus study the competition between

convection and baroclinic instability in a more controlled

environment and reveal that baroclinic instability de-

velops even in the presence of strong convection.

In Callies et al. (2016), the evolution of baroclinic in-

stabilities in the ocean mixed layer was studied using a

quasigeostrophic model. Under quasigeostrophic scaling,

the restratification by baroclinic eddies is neglected and

themixed-layer stratification remains fixed. This implicitly

assumes an equilibrium between the restratification by

baroclinic eddies and the destabilizing effects of surface

forcing. It also assumes that the balanced flow is affected

by the presence of convection only through the mean

stratification. One of the goals here is to understand

whether such a decoupled evolution of the balanced

dynamics in the mixed layer is plausible.

The setup we study here provides a simple example of

competing baroclinic instabilities and convective flows

in a statistical equilibrium. We impose a fixed meridio-

nal buoyancy gradient 2fL in thermal-wind balance

with a zonal shear L (e.g., Taylor and Ferrari 2010),

which provides baroclinicity for the instability ( f is the

constant Coriolis parameter). In addition, we apply a

destabilizing buoyancy flux F at the surface and bottom

of a domain of depth H. For simplicity, there is no rep-

resentation of the thermocline, so any evolution of the

mixed-layer depth is neglected. The restratification by
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baroclinic eddies for our mixed layer with a rigid bot-

tom, however, is expected to be similar to the case with a

thermocline, because instead of folding thermocline

water with high potential vorticity (PV) into the mixed

layer, such high-PV water is generated at the bottom

boundary (Garner et al. 1992).

The artificial buoyancy forcing at the bottom is neces-

sary to allow the system to reach equilibrium. In the real

ocean, surface-forced convection can deepen the mixed

layer into the thermocline, and equilibrium is not

reached. Such a transient evolutionmeans that the system

steps through the parameter space explored below. It

seems worthwhile to study the equilibrium first, to isolate

the parameter dependence, before the more realistic but

complicated transient problem is addressed. We posit

that the interplay between convection and baroclinic in-

stability in the transient case is qualitatively similar to that

exhibited in the equilibrium case studied here.

In this setup, we study the flow under different forcing

conditions. The key parameter determining the strength

of the forcing is « 5 F/fL2H2. This is the ratio between

the destabilizing buoyancy flux and the dimensional part

of the Fox-Kemper et al. (2008) scaling for the baroclinic

buoyancy flux.We do not include the efficiency factor of

Fox-Kemper et al. (2008) because that appears to in-

crease over time in our simulations, and it ultimately

depends on the domain size. We vary the parameter

« over three orders of magnitude. Over this range, we

cover the transition from a weakly forced regime, in

which baroclinic instability restratifies the layer and

shuts off convection, to a very strongly forced regime, in

which convection is essentially upright and the effects of

baroclinic eddies negligible. Of particular interest is the

intermediate range, where convection persists, but bar-

oclinic instabilities still develop and significantly modify

the bulk properties of the fluid.

3. Setup

We study the nonhydrostatic Boussinesq equations

describing a rotating fluid between two horizontal solid

plates at z 5 2H and z 5 0 (Fig. 1). We solve for the

perturbations to an imposed background flow with zonal

shear L and meridional buoyancy gradient 2fL (Taylor

and Ferrari 2010). The perturbations satisfy periodic

boundary conditions in the horizontal coordinates x and y

in a domain of zonal extent Lx and meridional extent Ly.

The dynamics are given by the perturbation equations:

u
t
1Lzu

x
1Lw1 u � =u2 f y52p

x
1 n=2u , (1)

y
t
1Lzy

x
1 u � =y1 fu52p

y
1 n=2y , (2)

w
t
1Lzw

x
1u � =w5 b2 p

z
1 n=2w , (3)

b
t
1Lzb

x
2 fLy1u � =b5 k=2b, and (4)

= � u5 0, (5)

where u 5 (u, y, w) is the velocity vector, p is the density-

normalized pressure, b is buoyancy, n is viscosity, k is diffu-

sivity, and t is time. At the boundaries at z52H and z5 0,

we prescribe the buoyancy flux F,

2kb
z
5F , (6)

and impose no-normal-flow and free-slip conditions:w5 0,

uz 5 0, and yz 5 0. Note that the free-slip condition on u

implies small surface and bottom stresses 6nL that main-

tain the background flow against dissipation.

This setup constitutes an energetically consistent sys-

tem, in which the only energy source is the potential en-

ergy supplied by the buoyancy forcing (plus small sources

caused by diffusion and viscosity), and the only sink is

viscous dissipation. The potential energy equation is

2zb
� �

t
5FH2 fLhzyi2 w0b0� �

1 k b(0)2 b(2H)
� �

. (7)

Angle brackets denote a vertical integral over the depth

of the domain, the overbar denotes a horizontal average

over the domain, and primes denote deviations from this

horizontal average. Potential energy is supplied by the

buoyancy flux at the boundaries (first term on the right).

It can be converted to mean kinetic energy by gravita-

tional slumping (second term on the right) and to eddy

kinetic energy by buoyancy production (third term on

the right). Downward diffusion of buoyancy also in-

creases the potential energy (fourth term on the right),

but this term is generally small for the values of kwe use.

To derive the mean kinetic energy budget, we first

form the momentum equations of the horizontal-mean

velocities. These are free to evolve as they are forced by

momentum flux convergences:

FIG. 1. Sketch of the model setup: the domain is bounded vertically

by two plates, separated by a distance H. The horizontal dimensions

are Lx and Ly, and the domain is doubly periodic (in the perturba-

tions). An upward buoyancy flux F is imposed at both the top and the

bottom plate. The background buoyancy gradient is indicated by the

blue shading on the plates but is imposed throughout the domain.
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(Lz1u)
t
1 (u0w0)

z
2 f y5 nu

zz
, and (8)

y
t
1 (y0w0)

z
1 f u5 ny

zz
. (9)

The horizontal-mean vertical velocity vanishes, as re-

quired by continuity: w5 0. We include the imposed

background flow in the horizontal-mean flow to obtain a

closed energy budget. The mean kinetic energy budget

then reads

1

2
h(Lz1 u)2 1 y2i

t
5 fLhzyi1 h(L1 u

z
)u0w0i

1 hy
z
y0w0i2 nh(L1 u

z
)2 1 y2zi

1 nL[LH1 u(0)2 u(2H)] . (10)

Gravitational slumping appears as a source of mean

kinetic energy (first term on the right). Shear production

(second and third terms on the right), when positive,

converts mean to eddy kinetic energy. Dissipation

of mean kinetic energy (fourth term on the right) is

generally small, as is the input of kinetic energy by

the surface and bottom stress, which is implied by

prescribing a background shear that does not vanish at

the boundaries (fifth term on the right). Finally, the eddy

kinetic energy budget reads

1

2
hu02 1 y02 1w02i

t
5 hw0b0i2 h(L1 u

z
)u0w0i2 hy

z
y0w0i

2 nhj=u0j2 1 j=y0j2 1 j=w0j2i . (11)

Buoyancy production (first term on the right) and shear

production (second and third terms on the right) appear

with opposite signs here. The dissipation term (fourth

term on the right) generally dominates the dissipation

of energy.

It is worth pointing out a fundamental difference be-

tween the potential energy budget of this Boussinesq

system and that of an analogous quasigeostrophic sys-

tem (e.g., Bretherton and Karweit 1975; Salmon 1980;

Haidvogel and Held 1980; Larichev and Held 1995),

which was used in Callies et al. (2016) to study baroclinic

mixed-layer instabilities. In a doubly periodic quasi-

geostrophic model, there is an infinite reservoir of po-

tential energy available for release by baroclinic

instabilities. This is because the effect of vertical buoy-

ancy fluxes on the mean stratification is neglected in

quasigeostrophic scaling, such that both the horizontal

buoyancy gradient and the stratification are held fixed

and baroclinic instabilities can continually grow. In the

Boussinesq system, on the other hand, potential energy

must be supplied by buoyancy forcing at the boundaries.

This is required to supply baroclinic eddies with

potential energy available for release. Without this

supply, the eddies would restratify the layer until the

deformation radius is larger than the finite domain size.

At that point, while there remains a horizontal buoyancy

gradient, baroclinic eddies are unable to extract any

more potential energy and start decaying. In the Bous-

sinesq system, the explicitly captured, atmospherically

forced, small-scale turbulence is therefore required to

destroy stratification and thereby sustain baroclinic in-

stabilities in the mixed layer.

It should be noted that our setup is different from that

studied by Molemaker et al. (2010). They attempted a

direct comparison between Boussinesq and quasigeo-

strophic dynamics, which led them to remove the

horizontal-meanmomentum flux divergences in (1)–(3),

to introduce restoring to a given buoyancy profile and to

formulate an evolution equation for the horizontal

buoyancy gradient based on energetic arguments. The

setup described above is better suited for our purposes,

because it has a straightforward energy budget and no

interior restoring.

The adiabatic and frictionless form of (1)–(5) con-

serves the Ertel PV of the full flow:

q5 [ f z1=3 (Lzx1 u)] � (2fLy1=b) (12)

5(w
y
2 y

z
)b

x
1 (L1 u

z
2w

x
)(2fL1 b

y
)

1 ( f 1 y
x
2 u

y
)b

z
, (13)

where x, y, and z are the Cartesian unit vectors. In our

interpretation of simulation results, we will make use of

two fundamental properties of PV dynamics. First,

baroclinic instabilities increase the bulk PV by injecting

positive PV at the boundaries and folding it into the

interior of the fluid (Nakamura and Held 1989). Anal-

ogously, baroclinic instability in the real ocean lifts high-

PV water from the thermocline into the mixed layer

(Garner et al. 1992). Second, convection occurs when

q , 0 and rapidly restores PV to the marginally stable

state q 5 0 (Hoskins 1974; Emanuel 1994; Haine and

Marshall 1998). In the presence of baroclinic shear, this

convection is slantwise and the result of symmetric

rather than gravitational instabilities. Slantwise con-

vection can produce positive buoyancy stratification

(bz . 0) by homogenizing buoyancy along tilted abso-

lute momentum surfaces, but it cannot increase the bulk

PV above zero. The telltale signs of such slantwise

convective adjustment, regions of positive stratification

and near-zero PV, have long been known to occur in

midlatitude atmospheric fronts (Emanuel 1988). In the

ocean, an adjustment from initially strongly negative PV

to near-zero PV has recently been observed in the

Kuroshio (D’Asaro et al. 2011).
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We here want to emphasize the difference between

convecting and restratifying states, rather than between

upright and slantwise convection. We diagnose restra-

tification using PV: when baroclinic instabilities are

strong enough, they increase the PV to q . 0, which

shuts off convection, including the slantwise kind.

Convecting states, on the other hand, have a PV close to

zero. We will see, however, that a q 5 0 state does not

mean that no baroclinic eddies are present. It only

means that these eddies are too weak to overcome the

destruction of PV by the buoyancy forcing.

The system of (1)–(5) is solved numerically using the

MITgcm (Marshall et al. 1997), modified to include the

additional terms arising from the interaction of the per-

turbationswith thebackgroundflow.All simulations have a

depthH5 100m, a grid spacingDx5Dy5Dz5 2m, and

n 5 k 5 1023m2 s21. We choose harmonic dissipation/

diffusion over a Smagorinsky (1963) closure, because it is

easier to close the energy budget, and it remains unclear

whether a Smagorinsky scheme is appropriate for flows

with strong baroclinic fronts. We do not expect the subgrid

closure to affect the results discussed in the following.

To reveal the parameter dependence of our setup, we

nondimensionalize the system (1)–(5) using the follow-

ing scales:

t; f21, x, y;LH/f , z;H, u, y;LH, w; fH,

(14)

b;L2H, p;L2H2 . (15)

This follows Stone (1971), except for the scale of buoyancy

and pressure, for which Stone had the imposed stratification

as an available scale. The nondimensional system reads

u
t
1 zu

x
1w1 u � =u2 v52p

x
1aDu , (16)

y
t
1 zy

x
1u � =y1 u52p

y
1aDy , (17)

d2(w
t
1 zw

x
1 u � =w)5 b2 p

z
1ad2Dw , (18)

b
t
1 zb

x
2 y1 u � =b5s21aDb, and (19)

= � u5 0: (20)

We abbreviate the diffusion operator byDA5 d2(Axx1
Ayy)1 Azz. The boundary conditions are2s21abz 5 «,

w 5 0, uz 5 0, and yz 5 0 at z 5 21 and z 5 0. The

nondimensional parameters of the problem are the ratio

of the forcing to the scaling for the baroclinic flux pro-

posed by Fox-Kemper et al. (2008), « 5 F/fL2H2, and

Stone’s (1971) nonhydrostatic parameter, d 5 f/L. The
strength of viscosity is measured by the Ekman number

a5 n/fH2, and the Prandtl number is s 5 1. Dissipation

and diffusion are posited to be unimportant for the bulk

behavior as long as they are sufficiently small. The re-

maining two nondimensional parameters measure the

domain size: lx 5 fLx/LH and ly 5 fLy/LH. The non-

dimensional potential energy budget reads

h2zbi
t
5 «2 hzyi2 hw0b0i1s21a[b(0)2b(21)] , (21)

the mean kinetic energy budget is

1

2
h(z1 u)2 1 y2i

t
5 hzyi1 h(11 u

z
)u0w0i1 hy

z
y0w0i

2ah(11 u
z
)2 1 y2zi

1a[11 u(0)2 u(21)] , (22)

and the eddy kinetic energy budget is

1

2
hu02 1 y02 1 d2w02i

t
5 hw0b0i2 h(11 u

z
)u0w0i2 hy

z
y0w0i

2ahd2(u02
x 1 u02

y )1 u02
z 1 d2(y02x 1 y02y )1 y02z 1 d2[d2(w02

x 1w02
y )1w02

z]i . (23)

The nondimensional form of PV is

q5 (d2w
y
2 y

z
)b

x
1 (11 u

z
2 d2w

x
)(211 b

y
)

1 (11 y
x
2 u

y
)b

z
. (24)

Note that a state with no stratification and no perturbation

to the background flow has a background PV of q 5 21.

The scales chosen above are appropriate when rota-

tion and baroclinicity play an important role in the dy-

namics. In the limit of strong forcing («/ ‘), however,
the dynamics revert to the classic problem of non-

rotating upright convection between two plates (e.g.,

Emanuel 1994). In this limit, more appropriate scales

can be formed from the forcing F and depth H (e.g.,

Marshall and Schott 1999):
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t; (H2/F)1/3, x, y, z;H, u, y,w; (FH)1/3, and (25)

b; (F2/H)1/3, p; (FH)2/3 . (26)

This nondimensionalization will prove useful when

considering strongly forced simulations.

4. Experiments

We focus on a series of experiments with d 5 1 for

two reasons. First, linear stability analysis suggests

that with this parameter, the baroclinic instability is

already close to the hydrostatic limit d / 0 (Fig. 2;

Stone 1971) that is of particular interest for strong

ocean fronts, where shears can greatly exceed f (e.g.,

D’Asaro et al. 2011). Second, this parameter choice is

practical because the most unstable baroclinic mode

then has an aspect ratio close to unity (Stone 1966),

which allows us to conveniently resolve the baroclinic

mode as well as upright convection. The increasing

aspect ratio of the baroclinic instability as d/ 0 makes

the concurrent simulation of baroclinic and convective

motions increasingly challenging, because there is an

increasing scale separation between the two types

of motion.

We recapitulate the linear properties of the system by

performing a linear stability analysis for the baroclinic

axis (no meridional variations) following Stone (1971).

We consider a mean state with stratification bz 5 1, such

thatq5 0. This is taken to be representative of theweakly

stratified state expected in the limit of strong convection.

The growth rates (Fig. 2) show a low-wavenumber geo-

strophic mode and a high-wavenumber ageostrophic

mode (Stone 1970; Nakamura 1988; Molemaker et al.

2005).We focus on the geostrophicmode, because it has a

much larger growth rate and represents the balanced

dynamics whose interaction with convection we seek to

investigate. This mode is most unstable at a zonal wave-

number k5 1.13 and has a short-wave cutoff at k5 1.68.

Because of the finite domain size, we only resolve a

discrete set of wavenumbers (Fig. 2). The domain size

lx 5 10 is chosen such that roughly two wavelengths of

the most unstable mode fit into the domain. For com-

parison, we also perform simulations in narrow domains

of zonal extent lx 5 2, in which no baroclinic instability

can develop (cf. Taylor and Ferrari 2010). Symmetric

instabilities, which occur for q , 0, only require across-

shear variations, so they are well represented in both

domains.

In a set of fully nonlinear simulations, we vary the

forcing parameter « over three orders of magnitude,

covering very weak to very strong forcing conditions. To

be able to distinguish a priori between weak and strong

forcing conditions, we begin with an unforced simulation

(« 5 0). This allows us to measure the (dimensionless)

buoyancy flux B5 hw0b0i generated by baroclinic in-

stability in the absence of convection. It successfully dis-

tinguishes between weak forcing « , B, for which

restratification occurs, and strong forcing « . B, for

FIG. 2. Growth rates from the linear stability analysis for d5 1 and

d5 0 for a background state with q5 0. The gray half-circlesmark the

discrete wavenumbers that are resolved in a domain lx 5 10 wide.

TABLE 1. Parameter values for the numerical simulations. We list both nondimensional parameters and the dimensional parameters used

in the MITgcm.

d « lx ly a F (m2 s23) f (s21) L (s21) H (m) Lx (m) Ly (m) Dt (s) n, k (m2 s21)

1.0 0 10 10 1.00 3 1023 0 1.00 3 1024 1.00 3 1024 100 1000 1000 10 1023

0.01 10 10 4.64 3 1024 1029 2.15 3 1024 2.15 3 1024 100 1000 1000 5 1023

2 10 4.64 3 1024 1029 2.15 3 1024 2.15 3 1024 100 200 1000 5 1023

0.1 10 10 1.00 3 1023 1029 1.00 3 1024 1.00 3 1024 100 1000 1000 10 1023

2 10 1.00 3 1023 1029 1.00 3 1024 1.00 3 1024 100 200 1000 10 1023

1 10 10 2.15 3 1023 1029 4.64 3 1025 4.64 3 1025 100 1000 1000 20 1023

2 10 2.15 3 1023 1029 4.64 3 1025 4.64 3 1025 100 200 1000 20 1023

10 10 10 4.64 3 1023 1029 2.15 3 1025 2.15 3 1025 100 1000 1000 20 1023

2 10 4.64 3 1023 1029 2.15 3 1025 2.15 3 1025 100 200 1000 20 1023
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which convection activelymixes the layer (cf.Mahadevan

et al. 2010). To isolate the effect of baroclinic instability,

the series of forced simulations are performed in pairs:

one with a wide and one with a narrow domain. Baro-

clinic instability has a short-wave cutoff and cannot de-

velop in the narrow domain, while the instability does

fit into the wide domain. All simulation parameters are

listed in Table 1.

a. Unforced simulation

We determine the flux B by measuring it in an un-

forced simulation instead of using the Fox-Kemper et al.

(2008) scaling. We resort to this empirical exercise be-

cause the scaling does not capture an increase in buoy-

ancy flux as the eddies become increasingly energetic

past the initial phase of their development (see Callies

and Ferrari 2017, manuscript submitted to J. Phys.

Oceanogr.). The energy level of the eddies is ultimately

set by the finite size of the domain, which translates

into a dependence ofB on the domain size. It is less clear

what limits how energetic mixed-layer eddies can

become in the real ocean, where scales up to the meso-

scale can be energized. We circumvent this question by

determining B empirically for the domain size used.

We initialize the simulation with a uniform stratifi-

cation bz 5 1 and add small random perturbations to u,

y, and b drawn from normal distributions with standard

deviations 1027m s21 and 1027m s22. The bz5 1 state is

marginally stable to symmetric instability, so the de-

velopment is dominated by the baroclinic mode (Fig. 2).

The evolution, once the system has reached finite am-

plitude and nonlinear terms have become important, is

illustrated with surface buoyancy snapshots in Fig. 3. In

accordance with the linear stability analysis, the mode

that reaches finite amplitude first has a zonal wavelength

of 5 (Fig. 3a). This baroclinic wave perturbation then

grows in scale, spanning the whole domain size at

wavelength 10 (Figs. 3b,c), presumably both because of

the linear growth of the wavelength-10 mode and non-

linear energy transfer from the wavelength-5 mode. The

domain-filling mode reaches finite amplitude, breaks,

and rolls up into a domain-filling vortex (Figs. 3c,d).

FIG. 3. Snapshots of b0 2 y (nondimensional) at the surface z5 0 for the unforced simulation at different stages of

the baroclinic instability.
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These baroclinic perturbations drive a vertical buoyancy

flux that restratifies the system. The restratification shifts

the short-wave cutoff of the instability to larger scales

and eventually renders the configuration stable to all

modes that fit into the domain. Linear theory predicts a

critical value of stratification past which all unstable

modes have scales too large to fit into the domain. The

shutdown of the vertical buoyancy flux occurs exactly

when the critical stratification is reached, confirming

that linear theory correctly predicts whether potential

energy can be released (cf. Stone 1972; Rhines 1977;

Salmon 1978; Fox-Kemper et al. 2008). After the re-

stratification shutdown, the domain-filling vortex per-

sists with roughly constant kinetic energy. We take the

maximum B 5 0.08 as representative of the buoyancy

flux that can be achieved by baroclinic instability in the

given domain.

This evolution can also be traced in the energy budget

shown in Fig. 4. We show all terms in (21)–(23) but here

focus on the buoyancy production hw0b0i that dominates

the generation of eddy kinetic energy. This term has

three distinct peaks at t5 44, 62, and 76. The first peak in

buoyancy production is associated with the wavelength-

5 mode (Fig. 3a), and the third peak is associated with

the wavelength-10 mode (Fig. 3c). The second peak

has both modes contributing and occurs during the

transition from the smaller to the larger mode (Fig. 3b).

The third peak is largest and reachesB5 0.08. After this

peak, the buoyancy production drops, as the restratification

has rendered the configuration stable. Subsequently, the

kinetic energy tendency is small; the little dissipation the

domain-filling vortex experiences is partially offset by a

small amount of buoyancy production. Furthermore, the

energy budget exhibits the signature of oscillations with a

period somewhat longer than inertial that have been trig-

gered by the instability. These oscillations may be bar-

oclinicallymodified inertial oscillations (Whitt and Thomas

2013) but are not the focus of this paper.

b. Weak forcing

We now turn to forced simulations and start with a

weak forcing « 5 0.01, which is much smaller than the

B 5 0.08 estimated from the unforced simulation. The

simulation is initialized as before with the q5 0 state with

bz5 1 and no flow anomalies. Convection quickly sets in,

but the baroclinic instability develops and restratifies the

system. The flow reaches a statistical equilibrium around

t 5 100, characterized by a domain-filling baroclinic

vortex (Fig. 5a) and strong stratification greatly exceeding

the initial bz 5 1 (Fig. 6a). The equilibrium is achieved

by a balance between the destabilization by the buoyancy

forcing and the restratification by the baroclinic mode.

FIG. 4. Time evolution of terms in the (a) potential, (b) mean kinetic, and (c) eddy kinetic

energy budgets for the unforced simulation (« 5 0).
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There is evidence of convection only in the center of the

cyclonic vortex, where the stratification is weakest. The

convective plumes reaching the surface can be discerned

in the surface buoyancy field, which is otherwise smooth

(Fig. 5a).

In the transient development, the peak buoyancy

production of about 0.04 is larger than the imposed

forcing (Fig. 7). This large buoyancy production draws

on the potential energy of the initial state but cannot be

sustained by the forcing. The system restratifies, which

stabilizes the baroclinic modes and leads to a decay in

buoyancy production. The baroclinic instability is not

shut off entirely like in the unforced simulation, how-

ever, because the destabilizing forcing keeps the system

slightly unstable to baroclinic instability. In statistical

equilibrium, the buoyancy production thus settles to a

value of about 0.01, corresponding to the forcing «. The

energy cycle of this equilibrated state is straightforward:

potential energy is created by the forcing, potential en-

ergy is converted to eddy kinetic energy by buoyancy

production, and eddy kinetic energy is dissipated by

viscosity. The mean kinetic energy plays no significant

role in the energetics.

To further characterize the statistical equilibrium, we

show the vertical profiles of the horizontal-mean PV av-

eraged in time over the equilibrated state (Fig. 8a). PV

has increased from the initial q 5 0 and is significantly

positive over the bulk of the domain. It is negative only

near the top and bottom boundaries, where the boundary

conditions force it to be q52(11 «s/a)5223 with our

choice of a 5 4.64 3 1024 and s 5 1 (Table 1).

This equilibrium state is very different from that

achieved in a narrow domain (cf. Taylor and Ferrari

2010). In a domain of width lx 5 2, no baroclinic in-

stability can develop, because no unstable mode fits into

the domain (Fig. 2). The imposed buoyancy flux is car-

ried by slantwise convection rather than by a baroclinic

vortex. The system adjusts to a state that is marginally

stable to symmetric instability, that is, one with q5 0

(Fig. 8a). The stratification is determined by the im-

posed geostrophic shear through the requirement that

q5 0 and settles at about bz 5 1. This is much weaker a

FIG. 5. Snapshots of b0 2 y (nondimensional) at the surface (z5 0) and at time t5 150 (in the equilibrated stage) for

different forcing strengths.
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stratification than achieved by baroclinic restratification

in the wide domain (Fig. 6a).

c. Moderate forcing

Next, we consider a moderately forced case, in which

the forcing « 5 0.1 is slightly larger than the B 5 0.08

estimated from the unforced simulation. Again, con-

vection sets in very quickly. But a baroclinic mode de-

velops and appears after t5 50. The system settles into a

statistical equilibrium that exhibits a coexistence of a

domain-filling baroclinic vortex and smaller-scale con-

vection (Fig. 5b).
The interplay between the baroclinic and convective

flows leads to an interesting state exhibiting significant

buoyancy stratification but a PV close to zero (Figs. 6b,

8b). PV is restored to zero by convection, but the con-

vective flows are modified by fronts generated by the

finite-amplitude baroclinic instability. At these fronts,

the convection is slantwise rather than upright, giving

rise to the buoyancy stratification.
The buoyancy stratification is stronger than the bz 5 1

expected from slantwise convection operating on the

background shear (Fig. 6b). In fact, purely convective

flows for this forcing—as simulated in a narrow do-

main—lead to an even smaller stratification, because

momentum fluxes eliminate part of the geostrophic

shear. This confirms that the baroclinic vortex signifi-

cantly modifies the convection.

The horizontal-mean PV is close to zero throughout

the bulk of the domain, as expected for slantwise con-

vection (Fig. 8b). There is significant cancellation

between a positive bz and the remaining terms in (24),

showing the influence of the baroclinic vortex. This

cancellation renders the total PV profile very similar to

that of the narrow domain, in which the stratification is

much weaker. This similarity in q suggests that the

flows in both the wide and narrow domains are equally

convecting, restoring to a convectively neutral state

q5 0. The baroclinic eddies do not manage to restratify

in the sense of increasing the horizontal-mean PV

above zero in the interior of the domain and thereby

shutting off (upright or slantwise) convection. But the

baroclinic eddies do provide additional shear that

modifies the convection and allows some buoyancy

stratification.

Another fingerprint of slantwise convection can

be found in the energy budget (Fig. 9). The bulk of

eddy kinetic energy is generated by buoyancy pro-

duction, but there is a significant contribution from

shear production. This is expected for slantwise

convection, which can draw on the kinetic energy of

the mean flow (Haine and Marshall 1998; Thomas

et al. 2013). The mean kinetic energy is supplied by

gravitational slumping that attempts to restore geo-

strophic balance against the destabilizing effect of the

momentum fluxes.

FIG. 6. Horizontally averaged buoyancy profiles for wide and narrow domains and for dif-

ferent forcing strengths as indicated in the titles. The lower axis is given in the standard non-

dimensionalization (14)–(15); the upper axis is given in the alternative nondimensionalization

(25)–(26). The slanted black lines indicate bz 5 1 profiles. All profiles are averaged in time over

the equilibrated range 100 , t , 200.
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d. Strong forcing

As the forcing is increased to « 5 1, much larger than

B 5 0.08, convection is expected to dominate the flow.

We find, however, that the strong convective flows are

still modified detectably by baroclinic eddies (Fig. 5c).

Baroclinic instabilities develop on top of the strong

convection, increase the shear at fronts, and render the

convection more slantwise.

The buoyancy stratification clearly shows this effect

of the baroclinic instability (Fig. 6c). The stratification

that results from this interplay of the baroclinic flow

with convection is increased above the weak stratifi-

cation that results from pure convection in the narrow

domain. As expected from « � B, the baroclinic in-

stability is not able to achieve true restratification, in

the sense of increasing the horizontal-mean PV above

zero in the interior of the domain (Fig. 8c). In fact, the

PV profiles for the wide and narrow domains are in-

distinguishable; both are restored to zero by strong

convection.

The eddy kinetic energy production is now strongly

dominated by buoyancy production, but a significant

contribution from shear production is still detectable

(Fig. 10). Slantwise convection, while weak, thus still

manifests itself in the energy budget.

e. Very strong forcing

At a very strong forcing of «5 10, the flow is finally in

the limit of no rotation and no shear and dominated by

strong upright convection (Fig. 5d). The effect of the

baroclinic instability is negligible, and the characteristics

of the flow in the wide domain are indistinguishable

from that in the narrow domain.

The buoyancy profile is now unstratified over the

bulk of the domain (Fig. 6d). The profiles are in-

distinguishable between the wide and narrow domains.

The profiles are also very similar to those found in

the narrow domain with « 5 1 (but not the wide one)

if the comparison in this strongly convective limit

is done in the alternative nondimensionalization

(25)–(26) shown on the upper buoyancy axis (Fig. 6c).

Similarly, the PV profiles are indistinguishable between

the narrow and wide domains and also match that of the

narrow domain with « 5 1 in the alternative non-

dimensionalization (Figs. 8c,d).

The energy budget is now a straightforward conver-

sion of potential energy into eddy kinetic energy by

buoyancy production, balanced by dissipation of eddy

kinetic energy, as expected for pure upright convection

(Fig. 11). There is no significant contribution from shear

production.

FIG. 7. Time evolution of terms in the (a) potential, (b) mean kinetic, and (c) eddy kinetic

energy budgets for the weakly forced simulation (« 5 0.01).
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5. Discussion

Our simulations suggest that baroclinic instabilities

are remarkably resilient to the presence of convection.

When the forcing is weak, the instability’s buoyancy flux

is larger than the imposed flux and restratification oc-

curs. Positive PV is injected at the boundaries, and the

bulk PV of the fluid is increased above zero, shutting off

convection. If the forcing is stronger, exceeding the

buoyancy flux that can be generated by baroclinic in-

stability, convection persists and keeps the bulk PV near

zero. Baroclinic growth still occurs, however, and mod-

ifies the convection by forming baroclinic eddies and

fronts, along which baroclinic shear is intensified and

convection more slantwise. For very strong forcing, this

effect is small and convection becomes indistinguishable

from the limit of upright convection. This limit appears

to be approached gradually, with no qualitative transi-

tion at which the baroclinic instability is shut off.

These results were obtained for a background flow

with moderate shear, d 5 f/L 5 1. We expect, however,

that the results carry over to the hydrostatic limit d/ 0.

As shown by Stone (1971) and in Fig. 2, the linear dy-

namics are similar for d5 1 and d5 0. In the presence of

convection, we expect the baroclinic instability to persist

in the d / 0 regime just as well as in the d 5 1 case

analyzed here. The increasing scale separation between

the instability and upright convection as d / 0, which

makes the concurrent simulation in this limit so chal-

lenging, suggests that strong energy transfer between the

processes becomes more difficult. Future work should

test this speculation.

One change in the dynamics that is expected as d is

decreased is that convection will have a tendency to be

more slantwise than in the d 5 1 case considered here.

The parameter «d is the cube of the ratio of the con-

vective velocity scale (FH)1/3 to the change in geo-

strophic flow over the boundary layer LH. Taylor and

Ferrari (2010) and Thomas et al. (2013) argued that this

ratio determines whether the geostrophic shear plays a

role in the dynamics and renders convection slantwise

(«d � 1) or whether convection is upright and over-

comes the geostrophic shear («d� 1). As d is decreased

below 1, an increasingly large « is needed to overcome

the effect of geostrophic shear to render convection

upright. Themore realistic d� 1 regime is thus expected

to exhibit convection that is more slantwise.

Nonhydrostatic effects become important in the linear

dynamics for d � 1 (Stone 1971). Horizontal buoyancy

gradients are weak in this regime, and baroclinic in-

stabilities can only play a role when the forcing is

weak, because « 5 d2F/f 3H2. It is left for future inquiry

to explore whether this regime with weak buoyancy

FIG. 8. Horizontally averaged PV profiles for wide and narrow domains and for different

forcing strengths as indicated in the titles. The profiles for the wide domains are split into

contributions from bz and the remaining terms. The lower PV axis is given in the standard

nondimensionalization (14–15), the upper in the alternative nondimensionalization (25–26).

All profiles are averaged in time over the equilibrated range 100 , t , 200.
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gradients and weak forcing has oceanic relevance or

whether baroclinic instabilities are unimportant where

buoyancy gradients are weak, in which case the dy-

namics are dominated by upright or rotating convection

(e.g., Julien et al. 1996; Marshall and Schott 1999).

To parameterize the restratification caused by baroclinic

mixed-layer instabilities in coarse-resolution ocean models,

it is necessary to understand under what atmospheric forc-

ing conditions such restratification occurs. Our analysis

shows that themagnitude of the baroclinic flux compared to

the forcing distinguishes between convecting and restrati-

fying conditions. As shown in Callies and Ferrari (2017,

manuscript submitted to J. Phys. Oceanogr.), however, the

baroclinic flux depends on the eddy scale, forwhichwehave

no good prediction. Understanding this dependence is cru-

cial for the parameterization effort, because it impacts both

whether or not restratification occurs and how strong it is

when it does occurs.

The finding that baroclinic instabilities can develop

even in the presence of strong convection can help us

understand the energization of submesoscale turbulence

in winter. The persistence of baroclinic instabilities ex-

plains how they can develop and produce energetic sub-

mesoscale flows even when the mixed layer is actively

convecting. The coexistence of baroclinic instability and

convection in moderate to strong forcing conditions is

consistent with the presence of energetic balanced flows

at scales of order 1–10km and the persistently weak

stratification in deep winter mixed layers. Strong atmo-

spheric forcing produces copious amounts of potential

energy available for release by baroclinic instabilities and

for turbulent redistribution across scales.

The persistence of baroclinic instabilities in the

presence of convection also lends credence to the

simple model of wintertime submesoscale turbulence

developed by Callies et al. (2016). It is at least plau-

sible that the balanced flow evolves with little in-

terference from convection and other small-scale

turbulence, in a background provided by a quasi

equilibrium between the restratification by baroclinic

instabilities and the destabilizing effect of atmospheric

forcing. Qualitative agreement between the simple

model and submesoscale observations is encouraging.

But future work should address whether there are im-

portant interactions between the balanced dynamics and

small-scale turbulence that are missing from a quasigeo-

strophic description of submesoscale turbulence in the

mixed layer.

The situation in summer is less clear. The fact that

baroclinic instabilities can grow in the presence of

convection means that they are unlikely to be damped

out in shallow summer mixed layers, even if mixing

FIG. 9. Time evolution of terms in the (a) potential, (b) mean kinetic, and (c) eddy kinetic

energy budgets for the moderately forced simulation (« 5 0.1).
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time scales are short. The observed lack of energiza-

tion of order 1–10-km flows in summer must then be

explained by a lack of energy transfer to these scales

from the small instability scale. A plausible scenario is

that the small amount of potential energy available for

release in shallow summer mixed layers is insufficient

FIG. 10. Time evolution of terms in the (a) potential, (b) mean kinetic, and (c) eddy kinetic

energy budgets for the strongly forced simulation (« 5 1).

FIG. 11. Time evolution of terms in the (a) potential, (b) mean kinetic, and (c) eddy kinetic

energy budgets for the very strongly forced simulation (« 5 10).
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to significantly energize order of 1–10-km flows. Bar-

oclinic instabilities may successfully grow and re-

stratify the mixed layer in summer, but they quickly

exhaust the energy fueling their growth. Unlike in

winter, the summertime energy input from atmo-

spheric forcing is weak, leaving the energy throughput

too feeble for the instability to transfer significant

energy into 1–10-km flows. This scenario should be

made quantitative, and its consistency should be

tested in a setup that allows for the evolution of the

mixed-layer depth.

We finally note that the setup studied here does

not allow an assessment of how much energy from

submesoscale mixed-layer instabilities is transferred to

successively larger scales versus how much is lost to

dissipation at small scales (cf. Capet et al. 2008;

Molemaker et al. 2010; Sasaki et al. 2014). While the

baroclinic eddies have a clear tendency to energize

successively larger scales in the transient phase of our

simulations, there is no large-scale energy sink, so there

cannot be a sustained inverse cascade. The equilibra-

tion must instead occur through small-scale dissipation

of all of the kinetic energy generated baroclinically.

One would have to include motion all the way up to the

mesoscale to allow a realistic energy transfer to larger

scales. One may speculate, however, that the resilience

of baroclinic eddies to the presence of convection

might mean that the inverse cascade is more robust

than previously thought.
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