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Abstract10

Spectral analysis is applied to infer the dynamics of mesoscale winds from aircraft

observations in the upper troposphere and lower stratosphere. Two data sets are

analyzed: one collected aboard commercial aircraft and one collected using a dedicated

research aircraft. A recently developed wave–vortex decomposition is used to test the

observations’ consistency with linear inertia–gravity wave dynamics. The decomposition15

method is shown to be robust in the vicinity of the tropopause if flight tracks vary

sufficiently in altitude. For the lower stratosphere, the decompositions of both data

sets confirm a recent result that mesoscale winds are consistent with the polarization

and dispersion relations of inertia–gravity waves. For the upper troposphere, however,
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the two data sets disagree: only the research aircraft data indicate consistency with20

linear wave dynamics at mesoscales. The source of the inconsistency is a difference in

mesoscale variance of the measured along-track wind component. To further test the

observed flow’s consistency with linear wave dynamics, the ratio between tropospheric

and stratospheric mesoscale energy levels are compared to a simple model of upward-

propagating waves that are partially reflected at the tropopause. For both data sets, the25

observed ratio is roughly consistent with the simple wave model, but wave frequencies

diagnosed from the data draw into question the applicability of the monochromatic

theory at wavelengths smaller than 10 km.

1 Introduction

Meteorologists have debated what physical processes shape the atmospheric energy spectrum30

in the mesoscale range since Nastrom and Gage (1985) observed a conspicuous flattening of the

spectrum at these scales. These authors analyzed wind and temperature observations collected

aboard commercial aircraft during the Global Atmospheric Sampling Program (GASP) and

found spectra that roll off roughly like k−3 at synoptic scales and like k−5/3 at mesoscales,

where k is the along-track wavenumber. The steep roll-off at synoptic scales, wavelengths35

larger than about 500 km, is readily explained as resulting from a down-scale potential

enstrophy cascade of geostrophic turbulence (Charney, 1971). There is less agreement on

what dynamics cause the more gentle roll-off at smaller scales, in the mesoscale range.

Many explanations of the mesoscale spectrum rely on turbulent dynamics. An early

proposal was that the mesoscale spectrum arises from an energy cascade from small convective40

plumes to large-scale geostrophic motions (e.g. Gage, 1979; Lilly, 1983; Vallis et al., 1997).

A more recent explanation suggests that the mesoscale spectrum arises from frontogenetic

dynamics at the tropopause, which modify the characteristics of geostrophic turbulence

(Tulloch and Smith, 2006). A third explanation contends that the flow at mesoscales can
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escape the rotational constraint and that energy is thus transferred to small scales in strongly45

nonlinear stratified turbulence (e.g. Lindborg, 2006). In all these cases, Kolmogorov-type

dimensional analysis predicts a k−5/3 energy spectrum.

A power law spectrum does not necessarily imply strongly nonlinear cascade dynamics,

however, and a very different explanation was advanced early on: Dewan (1979) suggested

that the mesoscale energy spectrum arises from a superposition of quasi-linear inertia–gravity50

waves. This proposition is supported by observations in the frequency and vertical wavenumber

domains as well as by the analogy with the ocean, where inertia–gravity waves have long

been thought to dominate at scales smaller than those dominated by geostrophic motions (e.g.

VanZandt, 1982). What determines the spectral shape in this scenario is largely unclear, but

second-order nonlinear wave–wave interactions are known to result in power law behavior (e.g.55

Polzin and Lvov, 2011). The hallmark of this explanation of the mesoscale energy spectrum is

thus that the dynamics are to leading order linear rather than the implication of a particular

spectral slope.

To make progress and test theoretical predictions beyond the spectral slope, we recently

developed a decomposition method applicable to one-dimensional aircraft observations (Bühler60

et al., 2014). Under the assumption of horizontal isotropy, the method first decomposes

the horizontal kinetic energy into rotational and divergent components. Applied to the

commercial aircraft data collected as part of the Measurement of Ozone and Water Vapor

by Airbus In-Service Aircraft (MOZAIC) project, this Helmholtz decomposition shows that

the mesoscale flow has a significant divergent component, ruling out theories relying solely65

on quasi-geostrophic dynamics (Callies et al., 2014). This reduces the question of what

dynamics govern the dominant mesoscale flows to whether they obey quasi-linear dynamics

(inertia–gravity waves) or are strongly nonlinear (stratified turbulence).

To address this question, the method developed in Bühler et al. (2014) has a second

step that attempts a wave–vortex decomposition based on the assumption that the flow is a70
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superposition of geostrophic flow and linear inertia–gravity waves. The method provides a

prediction of the total hydrostatic wave energy (horizontal kinetic plus potential) based on

the observations of the horizontal velocities only. A comparison of this predicted total wave

energy with the observed total energy is then a check on the consistency of the flow with

the polarization and dispersion relations of inertia–gravity waves. Conversely, if the flow is75

strongly nonlinear—not satisfying polarization and dispersion relations—one would expect

the predicted energy to differ from the observed energy. In Callies et al. (2014), we applied

this procedure to the MOZAIC data and found that the observations in the mesoscale range

are consistent with inertia–gravity waves.

Lindborg (2015) also applied the Helmholtz decomposition—reformulated for structure80

functions—to the MOZAIC data. He separated the data into tropospheric and stratospheric,

using a threshold ozone concentration of 200 ppbv. For structure functions in both the

troposphere and the stratosphere, he found a significantly larger rotational than divergent

component at mesoscale separations, with a more pronounced dominance of the rotational

component in the troposphere. A dominance of rotational kinetic energy would be inconsistent85

with inertia–gravity waves, which cannot have more rotational than divergent kinetic energy,

but no such simple statement holds for the corresponding structure functions (cf. appendix A).

In Callies et al. (2014), we did not separate the data into altitude ranges but instead used

all available flight tracks of sufficient length and data quality (cf. appendix A). The spectra

presented there include both tropospheric and stratospheric data, but are dominated by the90

more numerous tracks in the lower stratosphere (Fig. 1). Unlike the structure functions shown

by Lindborg (2015), the spectra presented in Callies et al. (2014) exhibit a rough equipartition

between the rotational and divergent components of horizontal kinetic energy over a wide

mesoscale range, with a slight dominance of the divergent component at wavenumbers around

k = 2π/100 km. As confirmed by the wave–vortex decomposition, this is consistent with95

inertia–gravity waves dominating the mesoscale range.
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The discrepancy between the energy spectra of Callies et al. (2014) and the structure

functions of Lindborg (2015) can be fully explained by the relationship between structure

functions and spectra, as illustrated in detail in appendix A. Briefly, structure functions

contain the same information as spectra, but they are not optimal to study energy distributions100

scale by scale. Structure functions are not necessarily spectrally local (e.g. Babiano et al.,

1985): the structure function at a certain separation r is not always indicative of the energy

spectrum at wavenumber k = r−1. If the energy spectrum is steep enough, the structure

function at separation r instead corresponds to energy at wavenumbers much smaller than

k = r−1. This well-known property of structure functions demands caution when interpreting105

structure functions obtained from aircraft observations. We show in the appendix that while

the spectra of Callies et al. (2014) exhibit approximate equipartition between rotational and

divergent kinetic energies at mesoscale wavenumbers k, the structure functions corresponding

to these spectra have a clearly dominant rotational component at mesoscale separations r. The

dominance of the rotational component in the structure functions at mesoscale separations r110

is due to leakage of synoptic-scale rotational energy and thus not indicative of mesoscale

dynamics. This resolves the apparent inconsistency between Callies et al. (2014) and Lindborg

(2015).

However, questions remain regarding the differences in mesoscale dynamics between the

lower stratosphere and upper troposphere. This will be explored with spectral analysis in115

this paper. Before applying the wave–vortex decomposition method to tropospheric and

stratospheric data, we investigate whether the method still works in the vicinity of a sharp

tropopause, where the assumption of vertical homogeneity does not strictly apply. Using a

simple model of upward-propagating linear inertia–gravity waves partially reflected at the

tropopause, we investigate what the method will predict for a vertically inhomogeneous wave120

field in the upper troposphere. We show that a simple and robust wave–vortex decomposition

result can still be obtained from our method provided that the altitudes of the flight tracks are
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randomly distributed in the vicinity of the tropopause, which induces a certain random-phase

averaging of the vertical wave structure.

We split the MOZAIC data into tropospheric and stratospheric and confirm that there125

is relatively more rotational mesoscale energy in the troposphere than in the stratosphere,

qualitatively consistent with Lindborg (2015). This result, however, is challenged by a data

set obtained as part of the 2008 Stratosphere–Troposphere Analyses of Regional Transport

(START08) campaign (cf. Pan et al., 2010; Zhang et al., 2015). In the upper troposphere,

these data show a clear dominance of divergent flow in the mesoscale range, in contrast130

to the MOZAIC data. The inconsistency between the two data sets casts doubt onto the

result obtained from the MOZAIC data and calls for an inquiry into the accuracy of the

wind measurements and the data processing. We discuss the respective advantages of the

two data sets and suggest that while we have high confidence in the START08 data, more

analysis of other data sets is needed to fully understand the mesoscale dynamics in the upper135

troposphere.

In addition to the wave–vortex decomposition, the consistency of the observed mesoscale

flow with linear inertia–gravity waves can be checked by considering the ratio between

mesoscale energies above and below the tropopause. This ratio can be predicted with the

simple model of partially reflected, upward-propagating linear inertia–gravity waves mentioned140

above. We show that the observed ratios are roughly within the range of ratios predicted by

linear wave theory.

The paper is organized as follows. Section 2 summarizes and extends the decomposition

method developed in Bühler et al. (2014) and introduces the notation. Section 3 investigates

the theoretical situation near a sharp tropopause and computes the detailed wave structure145

and wave energies above and below the tropopause. The following sections discuss the

decomposition and energy ratios of the MOZAIC data (section 4) and the START08 data

(section 5). Inconsistencies between the data sets and their respective merits are discussed in
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section 6. Section 7 summarizes and concludes. Appendix A discusses the relation between

structure functions and spectra and the differences in interpretation.150

2 Decomposition method

In Bühler et al. (2014), we introduced a method consisting of two parts. First, a Helmholtz

decomposition separates the one-dimensional spectrum of horizontal kinetic energy into a

rotational part and a divergent part. Second, a wave–vortex decomposition separates the

one-dimensional spectrum of total energy (kinetic plus potential) into a geostrophic part155

and a wave part. If all assumptions (discussed below) are satisfied, this method yields the

same energy partition as Bartello’s (1995) projection of three-dimensional flow fields onto

geostrophic and wave modes. The new method, however, only requires one-dimensional flow

data that are readily available from observations.

2.1 Helmholtz decomposition160

The Helmholtz decomposition operates on the observable density-weighted one-dimensional

spectra of the horizontal velocity components along the track u and across the track v:

Su(k) = 〈ρ0|û(k)|2〉, Sv(k) = 〈ρ0|v̂(k)|2〉, (1)

where the caret denotes a Fourier transform, ρ0 the mean density along the flight segment,

and the angle brackets an average over an ensemble of segments.1 Both altitude z and time t

are considered fixed and the rationale for the density-weighting is discussed in section 3165

below.

1We adopt the convention that the number of arguments of spectra and Fourier transforms determines
the number of dimensions of these quantities. We denote one- and two-dimensional spectra by the same
symbol Su, for example, distinguishing them by writing Su(k) for the one-dimensional and Su(k, l) for the
two-dimensional spectrum.
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To derive the decomposition in spectral space, we start with a conventional Helmholtz

decomposition in physical space:

u = −∂ψ
∂y

+
∂φ

∂x
, v =

∂ψ

∂x
+
∂φ

∂y
, (2)

where ψ denotes the streamfunction, φ denotes the velocity potential, and x and y denote

the along- and across-track coordinates, respectively. In Fourier space, these equations yield170

the two-dimensional spectra of u and v in terms of the two-dimensional spectra of ψ and φ:

Su(k, l) = l2Sψ(k, l)− 2klCψφ(k, l) + k2Sφ(k, l), (3)

Sv(k, l) = k2Sψ(k, l) + 2klCψφ(k, l) + l2Sφ(k, l), (4)

where l is the across-track wavenumber and Cψφ(k, l) is the co-spectrum

Cψφ(k, l) = Re〈ρ0ψ̂∗(k, l)φ̂(k, l)〉, (5)

the asterisk denoting a complex conjugate. If the flow is statistically isotropic, i.e. if Sψ(k, l),

Sφ(k, l), and Cψφ(k, l) depend on kh = (k2 + l2)1/2 only, integration over the across-track

wavenumber l yields175

Su(k) = Dψ(k)− k d

dk
Dφ(k), (6)

Sv(k) = −k d

dk
Dψ(k) +Dφ(k), (7)

where we defined the spectral functions

Dψ(k) =

∫ ∞

−∞
l2Sψ(k, l) dl, (8)

Dφ(k) =

∫ ∞

−∞
l2Sφ(k, l) dl, (9)

which represent the rotational component of Su(k) and the divergent component of Sv(k),

respectively. Contrary to what we stated in Bühler et al. (2014), the requirement that
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streamfunction and potential be uncorrelated is not needed as long as the flow statistics are

isotropic. If the co-spectrum Cψφ(k, l) depends on kh only, the integrand klCψφ(k, l) is odd180

in l and thus the integral over l of this cross term vanishes.

Using decay conditions as k →∞, the ODEs (6–7) can be solved for Dψ(k) and Dφ(k)

explicitly, which achieves the Helmholtz decomposition of the horizontal kinetic energy

spectrum

K(k) =
1

2

[
Su(k) + Sv(k)

]
(10)

into a rotational part and a divergent part:185

Kψ(k) =
1

2

(
1− k d

dk

)
Dψ(k), (11)

Kφ(k) =
1

2

(
1− k d

dk

)
Dφ(k). (12)

Lindborg (2015) pointed out that (6–7) can be combined to

2
d

dk

[
kKψ(k)

]
= k

d

dk
Sv(k) + Su(k), (13)

2
d

dk

[
kKφ(k)

]
= k

d

dk
Su(k) + Sv(k), (14)

which can be integrated to give (using integration by parts and the assumption that all

spectra vanish as k →∞)

2Kψ(k) = Sv(k) +
1

k

∫ ∞

k

[
Sv(κ)− Su(κ)

]
dκ, (15)

2Kφ(k) = Su(k)− 1

k

∫ ∞

k

[
Sv(κ)− Su(κ)

]
dκ. (16)

These explicit formulae are equivalent to (11–12) with Dψ(k) and Dφ(k) given as the solutions

to (6–7), both analytically and in practice when applied to discrete observational data (cf.190

Bierdel et al., 2016).
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2.2 Wave–vortex decomposition

If the flow is a superposition of geostrophic flow and linear inertia–gravity waves, the total

energy spectrum can be written

E(k) =
1

2

[
Su(k) + Sv(k) + Sw(k) + Sb(k)

]
= Eg(k) + Ew(k), (17)

where the geostrophic part is decorated with a subscript ‘g’ and the wave part with a195

subscript ‘w’;

Sw(k) = 〈ρ0|ŵ(k)|2〉, Sb(k) = 〈 ρ0
N2
|b̂(k)|2〉 (18)

are the vertical velocity spectrum and the potential energy spectrum, with b denoting buoyancy

and N the buoyancy frequency (averaged over the flight segment).

Plane or slowly varying linear waves obey the energy partition statement

2Kψ
w(k) + Sbw(k) = 2Kφ

w(k) + Sww (k), (19)

such that the total wave energy is given by200

Ew(k) = 2Kφ
w(k) + Sww (k). (20)

For nearly hydrostatic waves, the Sw(k) contributions to Ew(k) and to the right hand side

of (20) are negligible. In that case, we are left with

Ew(k) = 2Kφ
w(k), (21)

which is the relation used in Bühler et al. (2014) and Callies et al. (2014). If vertical velocity

measurements are also available, as is the case for the START08 data analyzed below, the

full non-hydrostatic decomposition (20) can be used.205

Given the Helmholtz decomposition, Kφ(k) is known from the observed Su(k) and Sv(k).

It can be attributed to the wave component, because the geostrophic flow is horizontally
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nondivergent. Similarly, the vertical velocity spectrum Sw(k), if available, can also be at-

tributed to the wave component, because geostrophic flow is purely horizontal (the Coriolis

parameter f is considered constant). If the flow is indeed a superposition of geostrophic flow210

and inertia–gravity waves, (17) can be used to diagnose the total energy of the geostrophic

flow as the residual of the observed total energy and the diagnosed wave energy,

Eg(k) = E(k)− Ew(k), (22)

and the wave–vortex decomposition of the total energy spectrum is thus complete.

Below, this wave–vortex decomposition will be used to test whether the dominant flow is

consistent with linear wave dynamics in the mesoscale range, where the horizontal kinetic215

energy has a significant divergent component. If the mesoscale flow is supposed to be

dominated by linear waves, the wave energy spectrum diagnosed with (20) or (21) constitutes

a prediction of the total energy spectrum based on velocity measurements only. If the observed

total energy spectrum E(k) then matches this prediction, the observed spectra are consistent

with the dispersion and polarization relations of inertia–gravity waves. If the observed E(k)220

does not match the prediction, the flow either has geostrophic and wave components that are

comparable in magnitude or the assumption that the flow is a superposition of geostrophic

flow and linear waves is not valid, for example because the unbalanced flow is strongly

nonlinear. This procedure is a rather stringent test of the hypothesis that the mesoscale

range is dominated by flow that follows linear wave dynamics. It should be noted that this225

test is completely agnostic about the spectral slope, which has long been used as the only

observational constraint for theories of mesoscale dynamics.
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3 Wave energy diagnostics near the tropopause

The wave–vortex decomposition method in Bühler et al. (2014) was developed for a random

flow in a linear Boussinesq system with vertically homogeneous statistics. This implies that the230

vertical structure of the inertia–gravity waves has to be a sum of mutually uncorrelated plane

waves with constant vertical wavenumbers and amplitudes. This includes the usual WKB

regime of slowly varying wavetrains, but it does not describe the atmospheric conditions in

the vicinity of the tropopause. Hence, the impact on the wave–vortex decomposition method

of vertical inhomogeneity near the tropopause should be carefully considered.2235

First, there is the decay of the basic density ρ0(z) with altitude and the concomitant

growth of the wave amplitudes such that Eliassen–Palm flux components like the phase-

average of ρ0uw remain constant. This non-Boussinesq effect means that the usually reported

wave energy spectra per unit mass, which are proportional to u2 and so on, are biased

towards the high-altitude tracks, along which ρ0(z) is lower. For flight tracks spread out over240

a vertical distance of 3 km or so, we found that while this effect does not change the results

qualitatively, it is a quantitatively noticeable effect. In this paper, we therefore consider only

density-weighted energy spectra, as defined in (1) and (18). This eliminates the density decay

effect from the observations quite satisfactorily.

Second, there is the presence of a tropopause, where the buoyancy frequency N increases245

sharply from tropospheric to stratospheric values. This does not affect the Helmholtz de-

composition in section 2.1, which is insensitive to vertical structure, but it does affect the

wave–vortex decomposition in section 2.2, which uses the energy equipartition results in (20)

or (21) that rely on the vertical homogeneity assumption. So this requires a more detailed

analysis, as the physical situation is quite complex. For the wave theory near the tropopause250

we will use the Boussinesq equations, in which ρ0 is taken as constant, but our results carry

2Other effects violating the vertical homogeneity assumption, for example strong vertical shear, are not
discussed here and should be explored in future work.
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over to variable ρ0(z). The theoretical modeling results do not answer all questions as of yet,

but they do aid and inform our subsequent analysis of the flight track data in sections 4–6.

The trustful reader interested primarily in the data and the differences between the data sets

can skip ahead to section 4.255

3.1 Sharp tropopause model and energy jump

The simplest tropopause model is a jump discontinuity in buoyancy frequency N . Specifically,

we let the undisturbed tropopause be at z = 0, where it separates tropospheric air in z < 0

with buoyancy frequency N1 from stratospheric air in z > 0 with N2 > N1. The density is

continuous at the tropopause, so there are no vortex sheets and hence the velocity fields are260

all continuous there. The same is not true, however, for the buoyancy field b and this obviously

affects the energy density on both sides of the tropopause, which in linear Boussinesq theory

is

E =
ρ0
2

(
u2 + v2 + w2 +

b2

N2

)
. (23)

At the tropopause, the velocities are continuous and so is the vertical material displacement ζ,

which is related to the buoyancy by b = −ζN2. It follows that the potential energy density265

term in (23) is proportional to ρ0ζ
2N2 and hence discontinuous directly at the tropopause,

with the resultant jump

E(0+)− E(0−) =
ρ0
2
ζ2(N2

2 −N2
1 ) (24)

across the tropopause. This general fact holds both for waves and quasi-geostrophic flows.

It implies that, directly at a sharp tropopause, the energy density is always higher on the

stratospheric side (z = 0+) than on the tropospheric side (z = 0−). Of course, this jump270

would not necessarily show up in aircraft data, because flight tracks are spread out over some

altitude range and in the troposphere this affects the average energies that are sampled along

them. We will demonstrate this in a simple model for the inertia–gravity wave structure near
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the tropopause.

3.2 Reflection and transmission of inertia–gravity waves275

We consider the textbook problem of inertia–gravity waves that are created by tropospheric

sources below the region of interest and which subsequently encounter partial reflection and

transmission at a sharp tropopause. Arguably, this is the simplest relevant wave model for

the case at hand. It results in a stratospheric wave field that consists of upward-propagating

transmitted waves, whilst the tropospheric wave field consists of a correlated superposition of280

upward incident and downward reflected waves. Hence, in this scenario, the stratospheric

wave field is still vertically homogeneous, but not the tropospheric wave field, for which

interference of correlated wave modes leads to wave spectra that depend on the distance to

the tropopause.

To make this precise, we consider a single plane wave with horizontal wavenumber k > 0285

and frequency ω < 0 that is oriented at an arbitrary angle in the horizontal plane. We

choose the x- and y-coordinates such that the horizontal wavenumbers are (k, 0); there is no

assumption that this coordinate system is aligned with the flight track. Notably, for a single

plane wave, the Helmholtz decomposition is trivial and explicit: the x-velocity u is induced

only by a velocity potential and the y-velocity v is induced only by a streamfunction.290

Let the vertical velocity in the troposphere and stratosphere be

w1 = Re
[
eiθ
(
Ae+im1z +Be−im1z

)]
and w2 = Re

[
eiθ
(
Ce+im2z

)]
. (25)

Here, A, B, and C are the amplitudes of the incident, reflected, and transmitted waves,

θ = kx − ωt, and the vertical wavenumbers m1 and m2 are positive numbers with ratio

α = m2/m1. We do not restrict to hydrostatic waves, because there is evidence that at the

highest wavenumbers of the START08 data, non-hydrostatic effects become important. We295
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do, however, ignore f 2 compared to N2, so we use the dispersion relation3

m2 + k2

k2
=

N2

ω2 − f 2
⇒ α =

m2

m1

=

√
N2

2 − ω2

N2
1 − ω2

. (26)

For hydrostatic waves, α ≈ N2/N1; but in general, α exceeds this value and indeed diverges

for tropospheric inertia–gravity waves nearing the buoyancy oscillation limit ω2 = N2
1 .

The relevant boundary conditions at z = 0 are that both w and wz are continuous

there; the latter can be deduced from the continuity of the horizontal velocity together with300

ux + wz = 0. Therefore, A+B = C and m1(A−B) = m2C, which is solved by

A =
1 + α

2
C and B =

1− α
2

C. (27)

The other fields are easily worked out using ux + wz = 0, bt +N2w = 0 and vt + fu = 0. In

the stratosphere, this yields

u2 = Re

(
− m2

k
Ceiθ+im2z

)
, (28)

v2 = Re

(
− m2

k

f

iω
Ceiθ+im2z

)
, (29)

w2 = Re

(
Ceiθ+im2z

)
, (30)

b2
N2

= Re

(
N2

iω
Ceiθ+im2z

)
. (31)

The corresponding fields in the troposphere are

u1 = Re

(
− m1

k
Ceiθ [α cos(m1z) + i sin(m1z)]

)
, (32)

v1 = Re

(
− m1

k

f

iω
Ceiθ [α cos(m1z) + i sin(m1z)]

)
, (33)

w1 = Re

(
Ceiθ [cos(m1z) + iα sin(m1z)]

)
, (34)

b1
N1

= Re

(
N1

iω
Ceiθ [cos(m1z) + iα sin(m1z)]

)
. (35)

3This is equivalent to the full dispersion relation with N2 instead of N2 − f2.
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3.3 Wave energy diagnostics305

In the stratosphere, all the quadratic mean fields and the wave energy are constant and

the equipartition statement (20) holds, i.e. the wave energy is twice the sum of divergent

horizontal kinetic energy and the vertical kinetic energy:4

E2 =
ρ0
2

(
u22 + v22 + w2

2 +
b22
N2

2

)
= ρ0

(
u22 + w2

2

)
= ρ0

m2
2 + k2

k2
|C|2

2
= ρ0

N2
2

ω2 − f 2

|C|2
2
, (36)

where the overbar denotes an average over phase θ. In the troposphere, conversely, the

quadratic mean fields are oscillatory in z:310

u21(z) =
m2

1

k2
|C|2

2

[
α2 + 1

2
+
α2 − 1

2
cos(2m1z)

]
(37)

v21(z) =
f 2m2

1

ω2k2
|C|2

2

[
α2 + 1

2
+
α2 − 1

2
cos(2m1z)

]
(38)

w2
1(z) =

|C|2
2

[
α2 + 1

2
− α2 − 1

2
cos(2m1z)

]
(39)

b21(z)

N2
1

=
N2

1

ω2

|C|2
2

[
α2 + 1

2
− α2 − 1

2
cos(2m1z)

]
. (40)

Combining this with (36) yields the tropospheric wave energy

E1(z) =
ρ0
2

(
u21 + v21 + w2

1 +
b21
N2

1

)
= E2

N2
1

N2
2

[
α2 + 1

2
+
α2 − 1

2

(
f 2

ω2
− ω2

N2
1

)
cos(2m1z)

]
.

(41)

This is oscillatory in z but with a frequency-dependent amplitude that is actually negligible

in the popular mid-frequency approximation, in which ω2 is large compared to f 2 but small

compared to N2
1 . The oscillation amplitude is largest if ω is close to N1. This is because of

the frequency-dependence of α, which implies that315

N2
1

N2
2

α2 − 1

2
=

r2 − 1

2r2(1− s2) where r =
N2

N1

and s =
ω

N1

. (42)

4In this section we only consider wave fields, so we omit the subscript ‘w’.
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Now, the diagnostic estimator for the energy of a vertically isotropic wave field E1 in (20) is

ρ0

(
u21 + w2

1

)
= E2

N2
1

N2
2

[
α2 + 1

2
+
α2 − 1

2

(
1− 2

ω2

N2
1

)
cos(2m1z)

]
. (43)

This agrees with E1(z) in (41) in the constant term but the oscillation amplitude is different.

Specifically, the diagnostic error is

∆E1 = ρ0

(
u21 + w2

1

)
− E1 = E2

N2
1

N2
2

α2 − 1

2

(
1− f 2

ω2
− ω2

N2
1

)
cos(2m1z). (44)

It turns out that for typical values such as f/N1 ≈ 0.01 this expression is equal to its

mid-frequency approximation for practically all wave frequencies except those within a few320

per cent of either f or N1. Hence we can replace (44) by

∆E1

E2

≈ r2 − 1

2r2
cos(2m1z) (45)

to excellent approximation. The diagnostic wave energy error in the troposphere increases with

r ≥ 1 but is never more than half of the stratospheric wave energy; for a typical stratification

jump of r = 2 the ratio would be 3/8. Notably, the diagnostic error ∆E1 is positive directly

at the tropopause z = 0, which means the diagnosed wave energy exceeds the true wave325

energy there. Indeed, the diagnosed wave energy may then exceed the total energy of the

flow there, which would lead to unphysical negative residual vortex energies diagnosed in

(22). Arguably, this will play a role in the analysis of the START08 data in section 5 below.

3.4 Random-phase averaging over flight tracks

The tropospheric cos(2m1z) oscillations raise the question of how to interpret diagnosed wave330

energies that are obtained by averaging over flight tracks taken at many different altitudes in

the troposphere. Two situations can be envisaged in which uncertainties do not arise. First,

the flight tracks could for some hypothetical reason be concentrated in the immediate vicinity

below the tropopause z = 0 such that cos(2m1z) can be approximated by unity. As pointed
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out in the last section, in this situation the diagnosed wave energy would always exceed the335

true wave energy on the tropospheric side of the tropopause. Indeed, the diagnosed wave

energy would be continuous across the tropopause such that

ρ0

[
u21(0) + w2

1(0)
]

= E2 = ρ0

(
u22 + w2

2

)
. (46)

This follows from the continuity of the velocity components at the tropopause. There is

no obvious reason, however, why flight tracks should be accumulated directly below the

tropopause.340

This leads to the second situation, which is much more practically relevant. Here averaging

over tropospheric flights at random altitudes below the tropopause leads to an effective random-

phase average in the vertical of the diagnosed wave energy. The cos(2m1z) terms then average

to zero and the wave–vortex decomposition becomes accurate in terms of the phase-averaged

energies. Of course, the efficacy of such random-phase averaging depends on the number of345

flight tracks, their altitude range below the tropopause, and the vertical wavelengths that

are involved. Basically, for a given vertical wavelength, a large uniformly random sample of

flights within at least a quarter wavelength below the tropopause would lead to a diagnosed

wave energy equal to

〈ρ0[u21(z) + w2
1(z)]〉 = 〈E1(z)〉 = E2

N2
1

N2
2

α2 + 1

2
= E2

r2 + 1− 2s2

2r2(1− s2) , (47)

where the angle brackets denotes phase-averaging. For instance, if the tropospheric flight350

tracks cover an altitude range of 1.5 km below the tropopause, then this argument predicts

that the energy level of waves with a vertical wavelength of 6 km or shorter will be diagnosed at

their phase-averaged level (47). Presumably, the energy level of waves with larger wavelength

would be diagnosed at a partially phase-averaged level, which ranges between (47) and the
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tropopause limit E2 in (46). For hydrostatic waves (47) reduces to355

〈E1(z)〉 = E2
r2 + 1

2r2
, (48)

which is a decreasing function of r ≥ 1 with values between unity and 1/2, with typical value

0.625E2 for r = 2. Notably, the phase-averaged tropospheric wave energy can exceed the

stratospheric wave energy for high-frequency waves with ω2 > N2
1/2 (i.e. s2 > 1/2).

4 MOZAIC data

In this section, we describe the application of the decomposition method to the MOZAIC360

data, split into lower stratosphere and upper troposphere. We use the same set of flights from

2002–2010 as in Callies et al. (2014), but apply different selection criteria to separate flight

segments into stratospheric and tropospheric. We restrict all data to the northern midlatitudes

(30–60◦ latitude) and to above 350 hPa to exclude take-off and landing. Rare velocity spikes

are removed by dismissing data that changes by more than 10 m s−1 from one data point to365

the next (separated by about 1 km). Within the remaining data, we select segments of nearly

constant altitude by introducing break points where the 7-point running mean of altitude

changes by more than 3 m from one point to the next. This reliably identifies segments of

very nearly constant altitude while ignoring small-scale variations that presumably are due

to up- and downdrafts experienced by the aircraft. For each segment, the data are rotated370

into a coordinate system aligned with the best-fit great circle. We retain only segments that

are at least 250 km long, have an average spacing of at most 1.2 km, and deviate from the

best-fit great circle by less than 0.1◦.

For the segments passing these criteria, ERA-Interim reanalysis (Dee et al., 2011) is

consulted to classify them as tropospheric or stratospheric. For each data point, we compute375

the stratification at flight altitude from the reanalysis profile located closest in space and
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time to the data point. A segment is classified as ‘tropospheric’ if the buoyancy frequency

(square root of the segment-average stratification) is less than N = 1.2× 10−2 s−1 and as

‘stratospheric’ if it is greater than N = 1.8× 10−2 s−1; segments that fit neither of these

categories are discarded to exclude segments that cross the tropopause. This results in a380

total of 2752 tropospheric and 4681 stratospheric segments.5 We base the classification into

tropospheric and stratospheric on reanalysis rather than ozone concentration (Lindborg, 2015),

because not all MOZAIC flights have complete ozone data. This difference in classification

has no noticeable effect on the results.

Wavenumber spectra are estimated by applying a Hann window and computing a discrete385

Fourier transform for each segment, assuming a spacing equal to the average spacing over

the segment.6 The squared Fourier amplitudes are averaged over the segments and over

wavenumber bins uniformly partitioning the logarithmic wavenumber space with ten bins per

decade.

The resulting spectra for the upper troposphere and lower stratosphere both exhibit the390

transition from steep spectra at synoptic scales to flatter spectra at mesoscales (Fig. 2a,b).

This transition from a spectral slope of about −3 and one of about −5/3 occurs at wavelengths

around 200 km in the troposphere and around 500 km in the stratosphere. At scales smaller

than k = 2π/10 km, the spectra flatten again and become nearly white. This indicates the

dominance of measurement noise and errors associated with the rounding in the reported395

locations, velocities, and temperatures. We therefore disregard these small scales in the

following analysis.

The Helmholtz decomposition of the horizontal kinetic energy spectrum shows a dominance

of the rotational component at synoptic scales and a divergent component that becomes

5Note that the number of segments passing the selection criteria is much larger here than in Callies et al.
(2014; cf. Fig. 1), because here we require segments to be only 250 km instead of 6000 km long.

6In contrast to Callies et al. (2014), no interpolation onto a regular grid is attempted, because the locations
are reported only to an accuracy of 0.01◦ in longitude and latitude. The two approaches give indistinguishable
results at scales used for the analysis.
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appreciable at the transition to mesoscales, both in the troposphere and the stratosphere400

(Fig. 2c,d). The ratio of the divergent to the rotational component in the mesoscale range,

however, differs between the troposphere and the stratosphere. In the troposphere, the

rotational component is larger than the divergent component over the entire mesoscale

range. In the stratosphere, conversely, the divergent component dominates over the rotational

component by about a factor two. This is consistent with the tendency diagnosed by Lindborg405

(2015) that there is more rotational energy in the mesoscale range in the upper troposphere

than in the lower stratosphere. But the ratios between the divergent and rotational energy

spectra at mesoscale wavenumbers is larger than the ratios between Lindborg’s structure

functions at mesoscale separations, because the mesoscale spectra are not contaminated by

leakage of synoptic-scale rotational energy (see appendix A).410

This Helmholtz decomposition shows that the mesoscale MOZAIC data in the upper

troposphere cannot be explained by inertia–gravity waves alone, because linear wave theory

predicts that the divergent component of kinetic energy is at least as large as the rotational

component. In the lower stratosphere, on the other hand, where the divergent component

dominates, inertia–gravity waves are a plausible explanation for the data. These two results415

will be confirmed below with the wave–vortex decomposition. It should be noted, however,

that the Helmholtz decomposition is independent of any vertical homogeneity assumption

that will be necessary for the wave–vortex decomposition.

To apply the wave–vortex decomposition in the upper troposphere, we need to assess the

amount of random-phase averaging due to the distribution of flight altitudes with respect420

to the tropopause. To do this quantitatively, we would need an estimate for the vertical

wavelength of tropospheric waves. Such an estimate is not available directly from the data, but

a vertical wavelength much smaller than the horizontal wavelength is expected for hydrostatic

inertia–gravity waves. The START08 data discussed below support that waves are sufficiently

hydrostatic at the horizontal scales resolved by the MOZAIC data. Given that only a quarter425
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of the vertical wavelength must be sampled and that the tropospheric flight altitudes vary

by some 1.5 km (two standard deviations), it can be expected that at least some degree of

random-phase averaging occurs, which will reduce the diagnostic error below the maximal

error ∆E1(0)/E2 = (r2 − 1)/2r2 = 0.375 for a typical r = N2/N1 = 2. Further reduction

of the diagnostic error (44) can be expected if the wave frequencies approach the inertial430

frequency at large horizontal scales. Together, these two effects likely render the wave–vortex

decomposition relatively robust also in the upper troposphere.

The wave–vortex decomposition corroborates the differences in mesoscale characteristics

in the upper troposphere and lower stratosphere that were diagnosed by the Helmholtz

decomposition (Fig. 2e,f). In the lower stratosphere, the same result is obtained as in Callies435

et al. (2014): the diagnosed total wave energy nearly matches the observed total energy across

the mesoscale range. The picture differs significantly in the upper troposphere, where the

wave–vortex decomposition attributes no more than two thirds of the total energy to the

wave component. This indicates that the observed mesoscale flow is inconsistent with the

dispersion and polarization relations of inertia–gravity waves, as already suggested by the440

dominance of the rotational component of kinetic energy.

It is useful to test a second prediction of linear wave dynamics, particularly because in

the upper troposphere the wave–vortex decomposition result is contradicted by the START08

data set, as discussed below. As such an independent test, which is based on a different set of

assumptions, we consider the ratio between the tropospheric and stratospheric total energy445

spectra E1(k)/E2(k), where the subscripts 1 and 2 denote the tropospheric and stratospheric

spectra, respectively. For hydrostatic waves (s = 0), complete random-phase averaging, and

r = 2, (47) predicts this ratio to be 0.625. Across the resolved mesoscale range (10–200 km),

the observed ratio roughly matches this prediction (Fig. 3a). So even though the wave–vortex

decomposition indicates that the tropospheric observations are inconsistent with linear waves,450

the ratio between the tropospheric and stratospheric total energies is consistent with the
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simple model of partially reflecting upward-propagating inertia–gravity waves discussed in

section 3. We will see in the following section that the START08 data offer additional support

for the inertia–gravity wave hypothesis.

5 START08 data455

As part of the START08 campaign (Pan et al., 2010; Zhang et al., 2015), all three components

of the wind vector as well as standard meteorological variables like temperature and pressure

were measured aboard the NSF/NCAR GV Research Aircraft. These are targeted observations

of mesoscale variability performed with high-precision, well-calibrated instruments, which

builds our confidence in the quality of the data.460

All START08 data used in our analysis are located over the continental United States

and Canada (Fig. 4). We identified a total of 15 upper-tropospheric segments and 65 lower-

stratospheric segments that were straight and at least 100 km long. The classification

into tropospheric and stratospheric was done by inspecting along-track–altitude sections of

stratification from reanalysis. Only tropospheric segments above 350 hPa are used to facilitate465

the comparison to the upper-tropospheric data from MOZAIC and to obtain relatively

homogeneous statistics. Spectra are computed the same way as described above for the

MOZAIC data. The only difference is the range of wavenumbers considered—which is here

chosen to extend from k = 2π/100 km to k = 2π/1 km, because the flight segments are

shorter, location is reported with higher precision, and the 1 Hz sampling interval amounts470

to a spacing of about 200–250 m.

The scales at which the spectra can be accurately estimated are too small to resolve the

synoptic-to-mesoscale transition. The tropospheric horizontal kinetic energy spectrum K(k)

has a slope of roughly −5/3 at wavelengths 10–100 km and of roughly −2 at wavelengths

1–10 km (Fig. 5, table 1). Su(k), Sv(k), and Sb(k) have roughly the same magnitude and shape475
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over the entire range of scales. The vertical velocity spectrum Sw(k) is significantly smaller

except at scales smaller than k = 2π/3 km, where Sw(k) has about the same magnitude as

the other spectra.

The stratospheric horizontal kinetic energy spectrum K(k) also has a slope of roughly

−5/3 at wavelengths 10–100 km but transitions to a significantly larger slope of −2.6 at480

wavelengths 1–10 km (Fig. 5, table 1, cf. Bacmeister et al., 1996; Zhang et al., 2015). Again,

Su(k), Sv(k), and Sb(k) have roughly the same magnitude and shape over the entire range

of scales. The vertical velocity spectrum Sw(k) is much smaller than the other spectra at

wavelengths 10–100 km and is of the same order but somewhat smaller at wavelengths

1–10 km.485

The change in spectral slope in the lower stratosphere is inconsistent with the hypothesis

that mesoscale dynamics are governed by stratified turbulence. This theory requires the

energy spectra to follow a k−5/3 power law all the way down to the much smaller dissipation

scales (Lindborg, 2006). We will test whether the START08 data are instead consistent with

linear inertia–gravity waves using—as above for the MOZAIC data—the Helmholtz and490

wave–vortex decompositions plus the ratio between the total energy spectra in the upper

troposphere and lower stratosphere.

The Helmholtz decomposition shows that the horizontal kinetic energy has a significant

divergent component over the entire range of resolved scales—in both the lower stratosphere

and the upper troposphere (Fig. 5c,d). In the lower stratosphere, the rotational and diver-495

gent components are about equal, with a slight dominance of the divergent component at

wavenumbers around k = 2π/50 km. In the upper troposphere, the divergent component is

significantly larger than the rotational component at scales larger than k = 2π/5 km. At

smaller scales, the two components converge.

The wavelengths 10–100 km are resolved by both the START08 and the MOZAIC data.500

In this overlap, the Helmholtz decompositions in the lower stratosphere are very similar
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(Fig. 2d, 5d). In the upper troposphere, however, the START08 data yield a significant

dominance of the divergent component (Fig. 5c), while the MOZAIC data yield a significant

dominance of the rotational component (Fig. 2c). This means that the START08 data allow

the inertia–gravity wave interpretation, while the MOZAIC data seem to exclude it in the505

upper troposphere.

We next perform the wave–vortex decomposition, assuming there is sufficient random-

phase averaging in the upper troposphere. The statistics are less robust here than for the

MOZAIC data, because there are only 15 tropospheric segments. These segments are fairly

well-distributed in altitude, however, which effects at least some degree of phase averaging.510

If there were no phase averaging, the maximum relative diagnostic error would be again a

modest ∆E1(0)/E2 = (r2 − 1)/2r2 = 0.375. The phase averaging that does occur presumably

reduces this diagnostic error significantly.

The wave–vortex decomposition yields a good match between the diagnosed total wave

energy and the observed total energy across the resolved scales and in both the upper515

troposphere and lower stratosphere (Fig. 5e–h). We perform both the hydrostatic decom-

position (21) and the non-hydrostatic version (20), which takes advantage of the vertical

velocity observations. There are slight improvements in the match between the observed and

diagnosed energies at scales smaller than k = 2π/10 km. This indicates that non-hydrostatic

effects become appreciable at these small scales.520

The START08 wave–vortex decomposition is consistent with the MOZAIC data in the

lower stratosphere, where mesoscale observations from both data sets are compatible with

the dispersion and polarization relations of linear inertia–gravity waves. As for the Helmholtz

decomposition, however, the two data sets differ in the upper troposphere: the START08

wave–vortex decomposition contradicts that of the MOZAIC data. The START08 data are525

consistent with inertia–gravity waves over the entire observed range, while the MOZAIC

data show a much larger rotational component at mesoscales and are thus incompatible with
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the inertia–gravity interpretation. The source of this mismatch will be explored in the next

section.

Before discussing that, however, we compare the observed ratio of the total energy between530

the upper troposphere and lower stratosphere with that predicted by the wave model described

in section 3. The observed energies in the upper troposphere and lower stratosphere are

roughly equal for 4–100 km wavelengths (Fig. 3b). At smaller scales, the stratospheric energy

drops below the tropospheric one, owing to the steeper slope in the stratospheric spectra.

The predicted ratio for a monochromatic wave in the hydrostatic limit is 0.625 if complete535

phase averaging occurs. For higher-frequency waves, the ratio increases, crosses unity at

ω2 = N2
1/2 and diverges in the non-hydrostatic limit. If there is no phase averaging, a ratio

between 0.625 (non-rotating limit) and 1 (inertial limit) is predicted.

To get a sense for the wave frequencies, we consider Sw(k)/Sb(k). This ratio equals

ω2/N2 for monochromatic waves; for a broadband wave field, the estimated frequency is an540

average over the collection of waves. In both upper troposphere and lower stratosphere, the

observations show that Sw(k)� Sb(k) for scales larger than about k = 2π/10 km, indicating

that waves at these scales are in the hydrostatic limit (Fig. 6). At smaller scales, Sw(k) is of

the same order as Sb(k), so waves are significantly non-hydrostatic. In the upper troposphere,

Sw(k)/Sb(k) slightly exceeds unity for the smallest resolved scales, which is not possible for545

linear waves that are confined to ω2 < N2
1 . There is considerable uncertainty in the estimated

ratio, however, and it is not clear whether this result is significant.

For scales larger than about k = 2π/30 km, the diagnosed frequencies in the upper

troposphere and lower stratosphere roughly match and indicate that waves at these scales

are in the hydrostatic limit (Fig. 6). The observed match of the total energy spectra at these550

scales is thus broadly consistent with the predicted values (Fig. 3). The observed ratio is

somewhat larger than the 0.625 predicted for full random-phase averaging with r = 2, but it

is consistent with the predicted range if there is little phase averaging.
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At scales smaller than k = 2π/30 km, the diagnosed frequencies differ in the upper

troposphere and lower stratosphere (Fig. 6). The stratospheric frequencies exceed the largest555

allowable frequency in the troposphere, ω2 > N2
1 , potentially defying the simple picture

of waves propagating upward from the troposphere. Wave sources might be present aloft.

The mismatch of tropospheric and stratospheric frequencies furthermore discourages the

application of our monochromatic prediction of the energy ratio. It is interesting to note,

however, that the dominance of the tropospheric energy at the smallest scales is consistent560

with the predictions from phase averaging in the non-hydrostatic regime of (48). These are

the scales at which non-hydrostatic effects are strong (Fig. 6).

In summary, the START08 data are consistent with the wave hypothesis, with the strongest

indication coming from the successful wave–vortex decomposition. In the lower stratosphere,

this diagnosis is consistent with the MOZAIC data, but in the upper troposphere it is not.565

We explore the source of this inconsistency between the two data sets in the next section.

For small scales, the START08 data suggest that the wave field may not exclusively consist

of waves propagating up from sources below the upper troposphere.

6 Comparison of data sets

The two data sets both cover the wavelengths 10–100 km. In this section, we use this range570

of overlap to discuss the discrepancies between the two data sets that became apparent in

the wave–vortex decomposition presented above. We here compare directly the spectra Su(k),

Sv(k), and Sb(k), so that this comparison is independent of the various assumptions used in

the analysis above.

In the lower stratosphere, all three spectra match remarkably well in the range of overlap575

(Fig. 7b). This explains the consistency of the results for the stratosphere. In the upper

troposphere, however, discrepancies arise (Fig. 7a). While Sv(k) and Sb(k) roughly match in
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the range of overlap, Su(k) is significantly larger in the START08 data than in the MOZAIC

data. It can be seen directly from (15) and (16) that this leads to the diagnosis of a reduced

divergent component of kinetic energy in the MOZAIC data and subsequently to the difference580

in interpretation laid out in the previous two sections.

The uncertainty in the tropospheric START08 data is relatively large, because only

15 segments are available. It is unlikely, however, that the persistently elevated START08

Su(k) over the range of overlap can be attributed to random effects. If the discrepancy was

random, there would be about an equal number of wavenumbers at which the START08585

Su(k) is larger and smaller than the MOZAIC Su(k), which is not the case. Furthermore,

the START08 data are qualitatively consistent with spectra computed from GV data from

the 2006 T-REX and the 2014 DEEPWAVE campaigns. These are not shown, because they

have an even more limited number of segments in the upper troposphere and therefore poor

statistics. But these results do increase the confidence in the robustness of the START08590

results.

The next possible explanation for the mismatch is that the two data sets sample distinct

tropospheric conditions. We performed a number of tests to check whether the inconsistency is

due to spatial or temporal variations in mesoscale characteristics. We restricted the MOZAIC

data in space to a sector over continental North America and in time to the months of the595

START08 campaign (April to June), but the inconsistency with the START08 data is robust.

While there is a difference in mesoscale energy levels between land and ocean (cf. Nastrom

et al., 1987), the MOZAIC data always exhibit a low Su(k), leading to a dominance of the

rotational component of kinetic energy in the upper troposphere. We also did not find any

bias due to flight track orientation, neither relative to cardinal direction nor relative to the600

segment-average wind. New data from the MOZAIC sequel IAGOS shows the same behavior.

Having ruled out these sources for the inconsistency, it seems likely that they stem from

the difference in instrumentation and data processing. The confidence in the GV data collected
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in the START08 campaign is high, because the instrumentation was developed and calibrated

specifically to target mesoscale variability.7 An in-depth comparison of the MOZAIC data to605

those collected with dedicated research aircraft would be useful to reconcile these two data

sets. Such an investigation should also explore whether the targeting of specific mesoscale

conditions by START08 (Pan et al., 2010) introduces any bias that leads to the mismatch.

7 Summary and conclusions

The observations of mesoscale variability are consistent with inertia–gravity waves in the610

lower stratosphere. Two data sets, the MOZAIC data collected aboard commercial aircraft

and the START08 data collected with the NSF/NCAR GV Research Aircraft, agree in their

diagnosis that the relative magnitudes of mesoscale along-track velocity, across-track velocity,

and buoyancy variations are consistent with the dispersion and polarization relations of

inertia–gravity waves. It should be noted that this result is not inconsistent with a dominance615

of mesoscale structure functions by their rotational component (Lindborg, 2015), because

structure functions suffer from the alias of synoptic-scale rotational energy into mesoscale

separations (see appendix A). Furthermore, a steepening of the observed spectra at scales

smaller than k = 2π/10 km is at odds with the alternative explanation of mesoscale variability

with stratified turbulence theory. The observations contradict this theory’s prediction that620

the spectral slope is −5/3 all the way down to dissipation scales.

It is important to note that power law spectra do not necessarily imply strongly nonlinear

cascade dynamics. It is known that weak interactions between quasi-linear waves can lead

to power law spectra (e.g. Polzin and Lvov, 2011), and other explanations consistent with

7Zhang et al. (2015) recently raised concerns about the accuracy of GV wind measurements at scales
smaller than k = 2π/10 km. The overlap with the MOZAIC data does not extend to such small scales,
however, so this potential issue does not affect our diagnosis of the inconsistency. The consistency with
inertia–gravity waves at scales smaller than k = 2π/10 km is surprising, if measurement error dominated on
these scales, but the results at the smallest scales should be taken with a grain of salt.
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quasi-linear waves are possible, for example weak interaction with the balanced component of625

the flow. How such weakly nonlinear dynamics may shape the mesoscale energy spectrum is

largely unexplored. The wave interpretation is thus not inconsistent with the observed power

law spectra and the change in spectral slope, but an explanation for the spectral shape is so

far missing.

The wave–vortex decomposition used to test the signal’s consistency with inertia–gravity630

waves relies on the assumption of vertical homogeneity. Because of the presence of the

tropopause, this assumption may break down in the upper troposphere. We showed, however,

that if flights sample the upper troposphere at sufficiently variable altitudes, random-phase

averaging occurs and renders the decomposition robust. Other possible violations of the

assumptions have not been discussed, for example the presence of strong vertical shear or635

horizontal anisotropy. These should be explored in future work.

The results obtained from the wave–vortex decomposition in the upper troposphere differ

between the two data sets. The START08 data are consistent with inertia–gravity waves

dominating mesoscale variability. In contrast, the MOZAIC data imply a larger rotational

component of kinetic energy and are thus inconsistent with inertia–gravity waves. The640

discrepancy between the two data sets in the upper troposphere can be traced to decreased

mesoscale variability in the along-track wind in the MOZAIC data.

The high confidence in the START08 data suggests that the inertia–gravity wave inter-

pretation also applies for the upper troposphere. This result should be confirmed with more

tropospheric observations that yield better statistics. It is also hoped that the START08645

and MOZAIC data sets can be reconciled by checking the MOZAIC data against the highly

accurate instruments of the GV.

We also compared the observed ratio between the total tropospheric and stratospheric

energy spectra with predictions from a simple model of upward-propagating waves that are

partially reflected at the tropopause. Both the MOZAIC and START08 data are roughly650
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consistent with the predicted ratio at 10–100 km. At smaller scales, the START08 data suggest

different frequency contents in the troposphere and stratosphere, barring the application of

the monochromatic wave model. The data also show that stratospheric wave frequencies may

exceed those allowed in the troposphere.

Another avenue for progress in understanding the mesoscale dynamics is to build on655

work with numerical models that resolve the mesoscale range (e.g. Hamilton et al., 2008;

Skamarock et al., 2014; Bierdel et al., 2016). Given these models pass a careful test against

available observation, they can be used to more extensively explore the dynamics of mesoscale

flows. Instead of the keyhole view of atmospheric flow available from one-dimensional aircraft

observations, models deliver the full time-varying three-dimensional flow field and thus allow660

a direct test of whether mesoscale winds are consistent with quasi-linear wave dynamics.
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A Decomposition of spectra and structure functions

Structure functions are a common tool for characterizing the statistics of turbulent flows (e.g.670

Batchelor, 1953). For some variable a, the (second order) structure function at separation r
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is defined as

∆a(r) = 〈ρ0
[
a(x+ r)− a(x)

]2〉, (49)

where x is the along-track coordinate. The structure function is related to the power spec-

trum Sa(k) by

∆a(r) = 2

∫ ∞

−∞
Sa(k)

[
1− cos(kr)

]
dk. (50)

The structure function thus contains the same information as the power spectrum. One must675

be cautious when interpreting structure functions, however, because the structure function at

some separation r is not necessarily reflective of variability at that scale (e.g. Babiano et al.,

1985). For a power law spectrum Sa(k) ∼ k−n, the structure function is only representative

of the spectrum near k = r−1 if 1 < n < 3. If the spectrum is steeper (n > 3), the relation is

nonlocal: the structure function at separation r is dominated by variability at scales larger680

than k = r−1. In this case, the structure function saturates at r2.

This point is illustrated in Fig. 8, showing the integrand of (50) for two power law spectra,

one with n = 5/3 and one with n = 3. This shows the contributions to the structure function

at separation r = k−1. For n = 5/3, the contribution is localized at wavenumbers somewhat

larger than k = r−1, so the structure function is spectrally local. For n = 3, however, all685

wavenumbers k � r−1 contribute equally to the structure function at separation r, so the

structure function is spectrally nonlocal. This is important to keep in mind when interpreting

the structure functions computed from aircraft data, as shown in the following.

We now show that the data analyzed in Callies et al. (2014) yield structure functions

that at mesoscale separations do not reflect mesoscale dynamics. While wavenumber spectra690

show a rough equipartition between the rotational and divergent components of horizontal

kinetic energy over a wide mesoscale range, structure functions exhibit a clear dominance of

rotational energy. This is due to the nonlocal nature of structure functions, which leads to an

imprint of the large rotational component at synoptic scales on the structure functions at
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mesoscale separations.695

We here use the 2002–2010 MOZAIC data with selection criteria similar to those used in

Callies et al. (2014), making no distinction between data above and below the tropopause.

Only data from northern midlatitudes (30–60◦ latitude) and above 350 hPa are used. Rare

velocity spikes are removed by dismissing data that changes by more than 10 m s−1 from one

data point to the next. Within the remaining data, we use all flight segments that are at least700

6000 km in length and have enough data coverage such that the average spacing is at most

1.2 km. A maximum of a 2◦ horizontal deviation from a best-fit great circle and a maximum

of 1000 m from the mean altitude are allowed. This results in a total of 751 segments.8

The locations and velocities are transformed into a coordinate system aligned with the

flight track determined by the best-fit great circle. As opposed to the interpolation onto705

a regular grid used in Callies et al. (2014), we now treat the data points as being equally

spaced with the average spacing, because the locations have large rounding errors (longitude

and latitude reported to 0.01◦). This change in data processing only affects the scales near

the Nyquist wavenumber and has no effect on the results presented, which are restricted to

wavenumbers smaller than k = 2π/10 km. The spectral estimates are obtained by applying710

a Hann window to all segments, Fourier transforming, and averaging over segments and

wavenumbers in 30 wavenumber bins uniformly partitioning the logarithmic wavenumber

space between k = 2π/10 000 km and k = 2π/10 km. Wavenumber bins with less than

150 Fourier components are discarded.

The along- and across-track velocity spectra Su(k) and Sv(k) and the Helmholtz decompo-715

sition of the horizontal kinetic energy K(k) into rotational and divergent components Kψ(k)

and Kφ(k) shows the same result as in Callies et al. (2014) (Fig. 9a,b). The synoptic range

is strongly dominated by the rotational component and the mesoscale range exhibits rough

8These are more than in Callies et al. (2014), because we now fit the great circle after removing the low-
altitude data from take-off and landing, which results in more segments satisfying the 2◦-horizontal-deviation
criterion. None of the results are affected by this change in data selection.

33



equipartition between the rotational and the divergent components, with a slight dominance

of the divergent component around wavelength 100 km.720

We compute from the same data the structure functions of along-track and across-track

velocity ∆u(r) and ∆v(r). Applying the Helmholtz decomposition (Lindborg, 2015)

2∆ψ(r) = ∆v(r) +

∫ r

0

[
∆v(s)−∆u(s)

] ds

s
, (51)

2∆φ(r) = ∆u(r)−
∫ r

0

[
∆v(s)−∆u(s)

] ds

s
(52)

to these structure functions produces a partitioning similar to Lindborg’s stratospheric

case (Fig. 9c,d). There is a strong dominance of the rotational component at synoptic-scale

separations and a modest dominance of the rotational component at mesoscale separations.725

It is confirmed that these structure functions are equivalent with the spectra by transforming

the spectra into structure functions using (50) (Fig. 9e,f).

This shows that even though there is a rough equipartition between rotational and

divergent kinetic energy over a wide range of mesoscales, as shown by the spectra in Fig. 9a,b,

structure functions do not diagnose this equipartition. Instead, they show a significantly larger730

rotational component at mesoscale separations. This dominance of the rotational component,

however, is reflective of a dominance at smaller wavenumbers and does not reflect variability

at the mesoscales themselves.

Lindborg (2015) shows the structure functions down to separations as small as 2 km. We

omit any separations below 10 km to be able to accurately estimate the structure functions735

from the spectra. Note that the first zero of the integrand in (50) is at kr = 2π, so a spectral

cutoff at wavelength λ0 = 2π/k0 = 10 km allows a somewhat accurate estimate of the

structure function down to a separation r0 = 2π/k0 = 10 km. To aid the comparison between

the structure functions and spectra, we marked in Fig. 9b the wavenumber corresponding to

the maximum contribution to the structure function at minimum separation r0 = 10 km if740

the spectrum were a k−5/3 power law.
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This comparison of equivalent spectra and structure functions emphasizes the point that

spectra are more informative about the dynamics at a certain scale, because the spectral

estimate at a certain scale represents variability at that scale if care has been taken in

windowing the finite data series. The value of a structure functions at separation r, on the745

other hand, can reflect variability at much larger scale. In the case of aircraft data, the

strong rotational component at synoptic scales affects the structure function at mesoscale

separations.
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Figure 1: Histogram of flight-average buoyancy frequency for MOZAIC flights with no selection
for altitude as in Callies et al. (2014). The vertical lines indicate the thresholds for buoyancy
frequency used in this paper for the classification of flight segments into tropospheric and
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Figure 2: Wavenumber spectra from the MOZAIC data, split into the upper troposphere
(T, left) and lower stratosphere (S, right). Shown are the raw spectra (a, b), the Helmholtz
decomposition (c, d), and the hydrostatic wave–vortex decomposition (e, f). The raw spectra
include a shaded region of unreliable small-scale data below 10 km wavelength, which is not
used in the subsequent analysis.
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Figure 5: Wavenumber spectra from the START08 data for the upper troposphere (T, left) and
lower stratosphere (S, right). Shown are the raw spectra (a, b), the Helmholtz decomposition
(c, d), the hydrostatic wave–vortex decomposition (e, f), and the full non-hydrostatic wave–
vortex decomposition (g, h). Additionally, the absolute value of the diagnosed vortex energy
is plotted in dashed to show its magnitude where it turns negative. The 95% confidence
intervals are shown by the gray shading.
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Figure 9: Spectra, structure functions, and their respective Helmholtz decompositions from
the full MOZAIC data. Shown are (a) the spectra and (b) their Helmholtz decomposition,
equivalent to Callies et al. (2014); (c) the structure functions computed directly from the
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10–100 km 1–10 km

troposphere −1.64 −1.96
stratosphere −1.71 −2.60

Table 1: Spectral slopes of START08 horizontal kinetic energy spectra K(k) as measured by
by least-square fits over the stated wavelength range (fits performed in logarithmic space)
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