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Abstract  33 

A buoyancy and volume budget analysis of bottom-intensified mixing in the abyssal ocean 34 

reveals simple expressions for the strong upwelling in very thin continental boundary layers, 35 

and the interior near-boundary downwelling in the stratified ocean interior.  For a given 36 

amount of Antarctic Bottom Water  which is upwelled through neutral density surfaces in the 37 

abyssal ocean (between 2000m and 5000m) up to five times this volume flux is upwelled in 38 

narrow turbulent sloping bottom boundary layers, while up to four times the net upward 39 

volume transport of Bottom Water flows downward across isopycnals in the near-boundary 40 

stratified ocean interior.  These ratios are a direct result of a buoyancy budget with respect to 41 

buoyancy surfaces, and these ratios are calculated from knowledge of the stratification in the 42 

abyss along with the assumed e-folding height that characterizes the decrease of the 43 

magnitude of the turbulent diapycnal buoyancy flux away from the sea floor.  These strong 44 

diapycnal upward and downward volume transports are confined to a few hundred 45 

kilometers of the continental boundaries, with no appreciable diapycnal motion in the bulk of 46 

the interior ocean.   47 

 48 

1.  Introduction 49 

The Antarctic Bottom Water (AABW) that sinks to the sea floor must rise through density 50 

surfaces in the abyss by the action of diapycnal mixing processes (together with a smaller role 51 

for geothermal heating).  The classic “abyssal recipes” paper of Munk (1966) achieved this 52 

diapycnal upwelling via a one-dimensional advection/diffusion balance which was consistent 53 

with a constant diapycnal diffusion coefficient of about 4 2 110 m s   throughout the ocean 54 

interior.  Since the buoyancy frequency increases with height, this one-dimensional 55 

advection/diffusion balance implies that the magnitude of the buoyancy flux and therefore the 56 

dissipation of turbulent kinetic energy is an increasing function of height; however observations 57 

and theory over the past twenty years have shown just the opposite, namely that diapycnal 58 

mixing activity increases towards the sea floor.    59 

In the past twenty years, and particularly as a result of the Brazil basin experiment of 60 

WOCE, observations and theory have shown that most of the diapycnal mixing activity in the 61 

deep ocean occurs above rough bottom topography and is bottom intensified with an e-62 
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folding height above the bottom with a typical vertical e-folding length scale of ~500m 63 

(Kunze et al (2006)).   64 

The decrease of the magnitude of the diapycnal buoyancy flux with height above the 65 

bottom causes a downwelling diapycnal velocity, and this raises the question of how AABW 66 

can upwell across isopycnals when the diapycnal mixing activity profile on every vertical cast 67 

implies downwelling.  Polzin et al. (1997) and St Laurent et al (2001) were aware of this 68 

apparent conundrum in the interior of the Brazil basin and they realized that the zero flux 69 

condition at the sea floor meant that there must be diapycnal upwelling in the bottom 70 

boundary layer.  Klocker and McDougall (2010) emphasized that the overall buoyancy 71 

budget can be satisfied while having the mean diapycnal motion being upward if the area of 72 

isopycnals increase with height; that is, the conundrum of how water can be upwelled 73 

diapycnally while having the magnitude of the diapycnal buoyancy flux increase towards the 74 

sea floor on every vertical cast cannot be resolved in an ocean with vertical side walls, but is 75 

possible with a sloping sea floor.  However, their area-integrated buoyancy argument did not 76 

resolve the question of exactly where and how the water upwells through isopycnals, 77 

although with hindsight, and by the process of elimination, it is clear that this diapycnal 78 

upwelling must occur very near the sloping boundary, as predicted by St Laurent et al (2001).   79 

de Lavergne et al. (2016) have diagnosed the negative diapycnal transport in the ocean 80 

interior caused by near-boundary breaking internal waves and they have pointed towards the 81 

important role of the turbulent bottom layer (BBL) in order to upwell the AABW and to close the 82 

circulation.  Ferrari et al. (2016) have studied the crucial role of these BBLs in allowing sufficiently 83 

strong upwelling across isopycnals therein to overcome the downwelling in the near-boundary 84 

stratified interior, while further away from the ocean boundaries there is no diapycnal motion.  85 

This view of the abyssal circulation contrasts sharply with our previous view of the diapycnal 86 

upwelling being distributed uniformly over the deep ocean basins.  Ferrari et al. (2016) showed 87 

that both in idealized numerical simulations and in the real ocean, the upwelling in the narrow 88 

turbulent boundary layers varied from two to three times the mean upwelling transport of 89 

AABW.   90 

The feature that causes this rather dramatic change in where we expect diapycnal motion in 91 

the abyss is the bottom-intensification of the diapycnal buoyancy flux.  In the present paper we 92 
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examine the volume-integrated buoyancy budget between pairs of buoyancy surfaces in the abyss 93 

using the Walin framework for including the influence of diapycnal transports and the boundary 94 

flux of buoyancy (that is, the geothermal heat flux).  The buoyancy budget for the whole ocean 95 

volume beneath a certain buoyancy surface is given by the very simple Eqn. (12) which shows 96 

that in steady state the magnitude of the diffusive flux of buoyancy across this buoyancy surface 97 

is equal to the integral with respect to buoyancy of the net diapycnal upwelling below this 98 

buoyancy surface.  By assuming that the bottom intensification occurs in an exponential fashion 99 

with height, we are able to relate the downwards diapycnal volume transport in the near-100 

boundary ocean interior (called the Stratified Mixing Layer, SML) to the total diapycnal diffusive 101 

buoyancy flux across a buoyancy surface.  This leads to very simple expressions (Eqns. (13) and 102 

(14)) for both the upwelling diapycnal volume flux in the BBL and the downwelling diapycnal 103 

volume flux in the SML, in terms of the net upwelling of AABW in the abyss.  The application of 104 

the Walin budget framework with respect to density surfaces in the abyss, and the resulting Eqns. 105 

(13) and (14) are the main results of this paper.  106 

One of the main conclusions is that the magnitude of the area-integrated buoyancy flux F  on 107 

a global buoyancy surface must be an increasing function of buoyancy in order to have net 108 

upwelling through a stably stratified ocean.  As pointed out by Klocker and McDougall (2010), 109 

this needs upwelling to be achieved despite the fact that the magnitude of the turbulent buoyancy 110 

flux is a decreasing function of height on each vertical profile.  Nonetheless, the ocean has found a 111 

way to achieve the net upwelling of bottom waters, and the secret lies in the BBLs (St Laurent et 112 

al. (2001), de Lavergne et al (2016) and Ferrari et al (2016)).   113 

There are two ways of ensuring that the magnitude of the area-integrated buoyancy flux 114 

increases with buoyancy (height).  First, the magnitude of the buoyancy flux just above the 115 

turbulent boundary layer, 0B , can be an increasing function of buoyancy, and second, the area of 116 

the SML can increase with buoyancy.  Neither of these ways of achieving the increase with 117 

buoyancy of the magnitude of the area-integrated buoyancy flux (i.e. d d 0F b  ) were 118 

considered in the seminal boundary mixing descriptions of Thorpe (1987), Garrett (1990, 1991, 119 

2001) or Garrett et al (1993) except perhaps in their reference to the “tertiary circulation” of 120 

Phillips et al. (1986) and McDougall (1989).   121 
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Our focus is on the mixing in the stratified ocean interior, and this focus is crucial.  This 122 

region of mixing was also the focus of Klocker and McDougall (2010), de Lavergne et al (2016) and 123 

Ferrari et al (2016).  Mixing very close to the sloping sea floor suffers from two effects that make 124 

the mixing processes there particularly ineffective at contributing to the flux of buoyancy.  First, 125 

the mixing efficiency is reduced in this boundary region because the stratification is observed to 126 

become very small, and second, there is a “secondary circulation” that was found by Garrett 127 

(1990, 2001) to dramatically reduce the net vertical flux of buoyancy.  Armi (1979) and Garrett 128 

(1990) both made the point that if near-boundary mixing were to make a significant contribution, 129 

then it would need to occur in the stratified near-boundary region.  This is exactly the SML region 130 

in which the enhanced diapycnal mixing above rough topography is observed to occur.   131 

The classic boundary mixing papers of Wunsch (1970), Phillips (1970), Thorpe (1987) and 132 

many of the Garrett papers, solve both the momentum and buoyancy equations, but in this paper 133 

we ignore the momentum balance and concentrate only on the buoyancy equation, as did Garrett 134 

(2001).  Furthermore, along an isopycnal near a sloping boundary the interior ocean is divided 135 

into two regions depending on the sign of the diapycnal velocity.    136 

In this paper we concentrate on the dianeutral upwelling and downwelling in the abyssal 137 

ocean for density classes that outcrop in the Southern Ocean but do not outcrop in the North 138 

Atlantic, so that it is clear that the upwelling must occur diapycnally in the ocean interior 139 

(Talley (2013)).  Throughout this paper we use the term “upwelling” to mean the diapycnal 140 

upwelling through buoyancy surfaces (rather than through geopotential surfaces as is 141 

sometimes meant by the word “upwelling”).  By performing our analysis with respect to 142 

density surfaces, the strong isopycnal flows and isopycnal turbulent stirring and mixing do not 143 

enter our equations.  That is, while these strong epineutral mixing processes will be effective at 144 

diluting any tracer signature of near-boundary diapycnal mixing processes into the ocean 145 

interior, they do not enter or complicate our analysis of diapycnal mixing and advection in 146 

density coordinates.   147 

 148 

149 
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2.  Diapycnal volume transports expressed in terms of the turbulent buoyancy fluxes and the 150 

geothermal heat flux  151 

In the present work we represent the boundary region in a particularly simple manner.  We allow 152 

a turbulent boundary layer right against the sloping sea floor in which the isopycnals are assumed 153 

to be normal to the sea floor, and at the top of this turbulent boundary layer we have assumed 154 

that the stratification abruptly changes to have the isopycnals essentially flat.   155 

The vertical profile of the magnitude of the diapycnal buoyancy flux B  in the deep ocean is 156 

taken to be zero at the sea floor and to increase with height in the BBL to a maximum value of 157 

0B  at the top of the BBL of thickness h , and then to decrease exponentially with height (with 158 

scale height d ) in the SML (see Figure 1).  The influence of the geothermal heat flux at the sea 159 

floor is secondary, as discussed below.  The turbulent buoyancy flux can be written in terms of 160 

the turbulent diffusivity D  acting on the vertical gradient of buoyancy zb  as the down-gradient 161 

flux zDb   (and note that 
2

zb N ).  We choose to frame the discussion in terms of the 162 

magnitude of the turbulent buoyancy flux per unit area which we give the symbol B  so that in 163 

the ocean interior we have zDbB .  Measurements of the dissipation of turbulent kinetic 164 

energy per unit mass,  , are often used to estimate B  as  B  where   is the mixing 165 

efficiency following Osborn (1980).  In the BBL it is the strong variation of the mixing efficiency 166 

  with height that is responsible for the magnitude of the buoyancy flux per unit area going 167 

from 0B  at the top of the boundary layer to zero at the sea floor (in the absence of the 168 

geothermal heat flux).   169 

We examine the buoyancy budget for the volume between two closely-spaced buoyancy 170 

surfaces b  and b b , bounded by a sloping sea floor as shown in Figure 2, following the 171 

approach of the appendix of Klocker and McDougall (2010) and the volume-integrated 172 

buoyancy and volume conservation approach of Walin (1982).  We ignore several subtleties of 173 

the equation of state of seawater and we take the vertical gradient of buoyancy zb  to be equal to 174 

the square of the buoyancy frequency, that is, 
2

zN b , and we use subscripts to denote 175 

differentiation.  Because the mixing intensity decreases smoothly in the vertical, the shaded 176 

control volume of Figure 2(b) actually extends all the way to the right in the figure even though 177 

the shading is shown ending where the mixing intensity becomes sufficiently small.  Along the 178 

upper b b  surface the magnitude of the diffusive buoyancy flux is the maximum value 0B  179 
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on that buoyancy surface at point a and decreases to the right, that is, away from the boundary 180 

along the buoyancy surface.  Similarly, along the lower buoyancy surface, the magnitude of the 181 

diffusive buoyancy flux is the maximum value 0B  on that buoyancy surface at point b and 182 

decreases to the right (the values of 0B  at points a and b may be different).   183 

The seawater nearest the sloping sea floor is assumed to be well mixed in a turbulent 184 

fashion and the zero flux boundary condition (in the absence of the geothermal heat flux) 185 

implies that the isolines of buoyancy are normal to the sea floor at this boundary.  The bottom 186 

mixed layer properties such as the flow speed in the boundary layer are taken to be 187 

independent of height in the boundary layer, implying that the divergence of the turbulent flux 188 

of buoyancy is also independent of height inside the boundary layer.  This is the motivation for 189 

why we have taken the magnitude of the buoyancy flux B  to vary linearly with height in the 190 

boundary layer from the value 0B  at the top of the turbulent boundary layer to zero at the 191 

bottom.   192 

The area of active mixing to the right of point a of the upper isopycnal in Figure 2(b) is not 193 

necessarily taken to be equal to that to the right of point b of the lower isopycnal, because, for 194 

example, the sloping wall may well be part of a surface of revolution, so that, if this slope, 195 

tan , is the continental boundary of a circular ocean, then the area of active mixing on the 196 

upper isopycnal will be larger than that on the lower surface.  Conversely, if the slope is the 197 

sloping boundary of a seamount with a depth-independent slope, the area of active mixing on 198 

the lower (annular) surface will exceed that of the upper surface.   199 

The horizontal distance of active mixing on the upper isopycnal scales as tand   which, 200 

for small slopes far exceeds the corresponding distance cosh   along this isopycnal inside the 201 

well-mixed turbulent boundary layer of depth h .  Because of this, and also because b  is 202 

smaller in the boundary layer by a factor of sin , compared with the gradient in the stratified 203 

ocean interior zb , when evaluating the total diffusive flux of buoyancy across the upper 204 

isopycnal, we may ignore the contribution from the area that lies inside the turbulent boundary 205 

layer and consider only the contribution from the area to the right of point a of Figure 2.  The 206 

same applies to the lower density surface.   207 

We define the magnitude of the diffusive buoyancy flux across the whole interior area of an 208 

isopycnal as  209 
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 , , d dF b x y x y  B ,   (1) 210 

where it is recognized that this integral only needs to be performed along the “near-boundary” 211 

stratified mixing layer (SML) where the dissipation is significantly non-zero.  That is, because 212 

B  decreases rapidly with height it also decreases very strongly with horizontal distance from 213 

the sloping boundary (to the right) in Figure 2(b).  The integral in Eqn. (1) is performed on a 214 

buoyancy surface so that F  is a function only of buoyancy b .  215 

The volume and buoyancy budgets of the shaded fluid of Figures 2(a) and 2(b) are 216 

examined in Appendix A, where the following results are found for the diapycnal volume 217 

transports in the turbulent bottom boundary layer (BBL), BBL , and net diapycnal volume 218 

transport, net , being the sum of BBL  and the diapycnal volume transport across the buoyancy 219 

surface in the SML, SML ,  220 

0
BBL

1
d

tanz

G
c

b 


 

B
 , (2) 221 

and  222 

net BBL SML

d 1
d

d tanz

F G
c

b b 
      . (3) 223 

The difference between these two equations gives the following expression for SML   224 

0
SML

d 1
d

d tanz

F
c

b b 
  

B
 . (4) 225 

These statements for the various diapycnal volume transports apply locally to an area of 226 

diapycnal mixing near a boundary, and they apply even when the flow is not in a steady state 227 

and also when the near-boundary layer region receives (or exports) volume from/to the rest of 228 

the ocean.  That is, a complete integration over the full area of a buoyancy surface is not needed 229 

to obtain these results; these three equations are applicable to a local area of mixing and also to 230 

the integral over a complete isopycnal, and they apply whether the ocean is stationary or non-231 

stationary.  The key assumptions we have made are that (i) the amplitude of turbulent 232 

diapycnal mixing decreases towards zero as one moves sufficiently far from the sloping 233 

boundary, and (ii) that a well-mixed turbulent boundary layer exists very close to the sloping 234 

solid boundary.  At this stage we have not assumed the functional form for the decrease of 235 

mixing intensity with height.   236 
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In these equations d dF b  is the rate at which the magnitude of the isopycnally area-237 

integrated turbulent buoyancy flux F  varies with respect to the buoyancy label b  of the 238 

isopycnals, G  and 0B  are the fluxes of buoyancy into the turbulent bottom boundary layer 239 

(BBL) per unit of exactly horizontal area due to the geothermal heat flux, G , and to the 240 

diffusive buoyancy flux at the top of the BBL, 0B , respectively,   is the angle that the bottom 241 

topography makes with the horizontal, and dc  is the element of spatial integration into the 242 

page of Figure 2.   243 

Eqn. (2) shows that the sum of the geothermal heat flux per unit area at the seafloor, G , 244 

and the magnitude of the turbulent buoyancy flux per unit area at the top of the BBL, 
  B0

, drive 245 

a net upwelling volume transport along the BBL.  The diapycnal upwelling transport, BBL , 246 

increases as the sea floor slope tan  decreases, and it increases in proportion to the 247 

“circumference” (or perimeter) of the edge of the isopycnal where it intersects the ocean 248 

boundary.  Eqn. (3) confirms that the net diapycnal upwelling is proportional to the increase 249 

with buoyancy of the magnitude of the area-integrated turbulent buoyancy flux, as discussed in 250 

the introduction, plus the geothermal contribution coming into the BBL.  Coming to grips with 251 

Eqn. (4) for the diapycnal sinking in the SML and its relationship to the BBL and net transports 252 

is a main focus of this work.   253 

Klocker and McDougall (2010) applied this buoyancy budget approach to the whole area of 254 

a neutral density surface in the interior of the deep ocean and they wrote the volume-integrated 255 

buoyancy budget corresponding to our Eqn. (3) as  2

z
AeN A    (see their equation (26), 256 

once the effects of the nonlinear nature of the equation of state are ignored in that equation, and 257 

noting that their derivation did not include the geothermal heat flux) where the product Ae  258 

stood for the area integral of the dianeutral velocity (i.e. net ) and A   stood for the area 259 

integral of the magnitude of the diffusive buoyancy flux, which we now label F .  Ferrari et al. 260 

(2016) wrote this volume integrated buoyancy budget as their equations (6) to (8), and they 261 

distinguished between the dianeutral advection that occurs in the ocean interior, SML , versus 262 

that occurring in the boundary layer, BBL .  In this work we continue to make this important 263 

distinction and to estimate the relative magnitudes of these two dianeutral volume fluxes.   264 

 265 
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3.  Diapycnal volume transports driven by the geothermal heat flux and the background 266 

turbulent diffusivity  267 

It is apparent from the above equations that the geothermal buoyancy flux contributes to 268 

the diapycnal volume flux in the BBL but does not contribute to the near-boundary diapycnal 269 

volume flux in the SML, SML .  In most of this paper it is convenient to ignore the influence of 270 

the geothermal heat flux from the discussion, but before doing so we will first estimate its 271 

magnitude.  In a ground-breaking study of the effect of the geothermal heat flux on the abyssal 272 

circulation Emile-Geay and Madec (2009) showed that the geothermal heat flux supplied heat to 273 

the BBL equivalent to what would be provided by a diapycnal diffusivity of potential 274 

temperature of approximately 4 2 11.2 10 m sx    immediately above the BBL.  Bearing in mind 275 

that the stability ratio    AzzR S     is approximately 2 in the abyssal ocean, this 276 

observation of Emile-Geay and Madec (2009) means that we may approximate zG b  in Eqn. (2) 277 

by a vertical diffusivity of buoyancy of approximately 4 2 12 10 m sx   .  Taking the perimeter of 278 

the global ocean at a depth of 2000m to be 75 10 mx  and the average value of 1 tan  to be 400 279 

means that the contribution of the geothermal buoyancy flux to the diapycnal volume transport 280 

is  281 

6 3 11
d 4 10 m s 4 Sv

tanz

G
c x

b 

  , (5) 282 

an estimate that is consistent with that deduced by de Lavergne et al. (2016).  The contribution 283 

of geothermal heating to BBL  is expected to grow from zero at the very densest buoyancy to no 284 

more than about 4 Sv at a buoyancy appropriate to an average depth of 2000m.  In the rest of 285 

this paper we will ignore the contribution of the geothermal heat flux to the abyssal circulation; 286 

if the geothermal heat flux were to be included, the real diapycnal transports BBL  (and net ) 287 

would be larger by amounts that vary from zero to about 4 Sv from the deepest part of the 288 

ocean up to 2000m.   289 

Not all of the energy that arises from the internal tide flowing over rough topography is 290 

dissipated locally and it must be recognized that there is a background internal gravity wave 291 

field that partakes in intermittent breaking events.  Observationally it seems that away from 292 

rough topography the interior ocean can be regarded as having a background diapycnal 293 

diffusivity of order 
5 2 110 m s 

 independent of height (Waterhouse et al. (2014)).  Taking the 294 
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area of the ocean at a depth of 2000m  to be 14 22.5 10 mx  and the square of the buoyancy 295 

frequency at this depth to be 
2 6 22 10 szN b x     means that the background diapycnal 296 

diffusivity of 5 2 110 m s   contributes 3 4 35 10 m sF x   to the area-integrated diapycnal 297 

buoyancy flux F  through the buoyancy surface corresponding to this depth.  The vertical 298 

length scale z zzb b  at this depth is about 1000m (this can be deduced from the slope of Figure 299 

3(c) at 3 23.5 10 msb x   , corresponding to a depth of 2000m ), and the proportional change 300 

in the area of the ocean with buoyancy is not the dominant effect at this height (see Figure 10 of 301 

Ferrari et al. (2016)) so that the contribution of the spatially constant diapycnal diffusivity 302 

5 2 110 m s   to the net diapycnal upwelling volume flux at 2000m is 303 

 3 4 3 6 2d d 5 10 m s 1000m 2 10 s 2.5SvnetQ F b x x x       .  From Eqn. (2), with 304 

0 zbB  being the diapycnal diffusivity 5 2 12 10 m sx    and again taking 1 tan  to be 400 and 305 

with the perimeter of the global ocean at a depth of 2000m being 75 10 mx , we find that the 306 

contribution of this background diapycnal diffusivity to BBL  to be 0.2Sv at a depth of 2000m.  307 

That is, of the 2.5 Sv of extra diapycnal upwelling at 2000m attributable to the background 308 

diapycnal diffusivity 5 2 110 m s  , 2.3 Sv is in the ocean interior and 0.2 Sv is upwelling in the 309 

boundary layer.  310 

Combining the influence of geothermal heating and of the constant interior diapycnal 311 

diffusivity of 5 2 110 m s  , these two processes are estimated to give rise to a contribution of up 312 

to 4 Sv + 2.5 Sv   6.5 Sv to net  of which 4 Sv + 0.2 Sv   4.2 Sv upwells as part of BBL  in the 313 

BBL and the balance, 2.3 Sv upwells in the ocean interior.  In what follows we will ignore these 314 

contributions to the abyssal diapycnal circulation so that the real diapycnal transports BBL  and 315 

net  will be larger by amounts that vary from zero (for the densest density class) to these 316 

approximate values at 2000m compared with the transports discussed below.   317 

In the remainder of this paper we will take  , d d,b x yF x y  B to exclude the 318 

contribution of the weak background diapycnal diffusivity (of order 
5 2 110 m s 

) to the area-319 

integrated diffusive buoyancy flux on a buoyancy surface, and we take net  to exclude the 320 

contributions to the net upwelling volume flux across buoyancy surfaces from both the 321 

background diapycnal diffusivity and the geothermal heat flux.  In addition, we ignore the 322 

contribution of cabbeling and thermobaricity to the diapycnal volume transport.   323 

 324 

325 
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4.  Relating the interior downwelling volume flux to the area-integrated buoyancy flux  326 

The equation for the dianeutral velocity e  in the stratified interior ocean can be found by 327 

taking the appropriate linear combination of the conservation equations for Absolute Salinity 328 

and Conservative Temperature (see McDougall (1984) or Eqn. (A.22.4) of IOC et al. (2010)).  329 

Ignoring various terms that arise from the non-linear nature of the equation of state of seawater, 330 

the dianeutral velocity can be expressed as (subscripts denote differentiation)  331 

z zeb  B  ,        or       
,

z

x yz

e
b b


 



B B
. (6) 332 

As explained in appendix A.22 of IOC et al. (2010), this equation is the evolution equation for 333 

the locally-referenced potential density; it is also the classic diapycnal “advection-diffusion” 334 

balance.  In deriving this expression the curvature of the buoyancy surfaces in space has been 335 

neglected, so this expression is accurate when the buoyancy surfaces are relatively flat such as 336 

in the stratified ocean interior.  Note that this expression for the diapycnal velocity applies even 337 

when the flow is unsteady, and it applies locally, on any individual water column.  In Eqn. (6) 338 

both zB  and zb  are evaluated on a vertical cast at constant x  and y , so that the diapycnal 339 

velocity e  is the exactly vertical component of the velocity that penetrates through the (possibly 340 

moving) buoyancy surface.   341 

We now spatially integrate this expression for the dianeutral velocity over the buoyancy 342 

surface in the stratified mixing layer (SML), that is, over that part of the area of the buoyancy 343 

surface that excludes the BBL, to evaluate the diapycnal volume flux SML  (defined positive 344 

upwards, so that in the SML both e  and SML  are negative) as  345 

 
SML

, ,
d dd d z

z

b x y
e x y x y

b
  

B
.   (7) 346 

It is now helpful to assume that the vertical shape of the turbulent buoyancy flux profile is 347 

exponential (see Figure 1), so that the variation of B  along the area of the buoyancy surface b  348 

in the stratified ocean interior is given by  349 

   0, , , expb x y x y
z

d

 
 
 

B B ,  (8) 350 

where the magnitude of the diffusive buoyancy flux at the top of the BBL, 0B , is specified as a 351 

function of latitude and longitude,  0 ,x yB , and z  is the height of the b  buoyancy surface 352 

above the top of the turbulent bottom boundary layer (BBL) at a given latitude and longitude.  353 
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From Eqns. (6) and (8) we see that the dianeutral velocity  , , z ze b x y bB  on buoyancy 354 

surface b  at a general latitude and longitude is  355 

 
   0 , ,,

, , exp
z z

x y
e b x y

b d

b yz

d b

x

d

 
  
 

 
BB

 ,  (9) 356 

whose integral over the buoyancy surface in the stratified mixing layer (SML) is  357 

 
SML

, ,
d d

zb d

b x y
x y  

B
.   (10) 358 

In the absence of knowledge of any spatial correlation between the variations of  , ,b x yB  359 

and zb d  along the buoyancy surface in the SML, we take the vertical scale height d  to be the 360 

fixed vertical scale 500md   and we approximate the right-hand side of Eqn. (10) as  361 

SML

z

F

b d
   , (11) 362 

where 
zb  is the average value of zb  along the whole area of the buoyancy surface 363 

(alternatively, this area average could be performed only in the SML).  This approximation to 364 

Eqn. (10) is equivalent to ignoring any spatial correlation between the mixing intensity 365 

 , ,b x yB  and the e-folding vertical buoyancy difference zb b d   over the SML on the 366 

buoyancy surface.  If such a correlation exists it is probably in the sense of reducing the 367 

magnitude of the right-hand side of Eqn. (11) since we might expect that the largest values of 368 

 , ,b x yB  on the SML would occur where the buoyancy surface is shallowest and zb  is 369 

probably also the largest.  We note in passing that if we were justified in assuming that the 370 

vertical decrease in the magnitude of the buoyancy flux was an exponential function of 371 

buoyancy (rather than of height as in Eqn. (8) above) so that 372 

      0 0, , , expb x y x y b b b   B B  where the e-folding buoyancy scale b  is 373 

constant along the buoyancy surface, then SML  would be given by SML F b    so that SML  374 

and F  would simply be proportional to each other.  But we are not aware of any observational 375 

support for the e-folding buoyancy scale b  being spatially invariant, so we follow the 376 

conventional practice of adopting an e-folding scale in height, that is, we retain the form (8).   377 

This rather direct relationship, Eqn. (11), between the downwelling volume transport SML  378 

in the SML and the magnitude of the area-integrated interior buoyancy flux, F , is a direct 379 

result of the relationship between the diapycnal velocity and the diffusive buoyancy flux of 380 
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Eqns. (6) and (8), namely z zeb d  B B .  Note that the vertical scale height d  in the 381 

above equations can be defined as zd  B B , rather than having to assume an exponential 382 

vertical profile, and similar results would follow.  Thus the choice of an exponential profile is 383 

one of analytical convenience.   384 

Just like our expressions Eqns. (2) and (3) for the net diapycnal volume flux in the BBL, the 385 

net diapycnal volume flux, Eqn. (11) for the SML near-boundary diapycnal volume flux applies 386 

to a local area integral along a buoyancy surface, and it applies even when the flow is unsteady 387 

with vertical heaving motion and with a mean epineutral transport between pairs of buoyancy 388 

surfaces.   389 

 390 

5.  The diapycnal upwelling in the BBL as a vertical integral of the net global diapycnal 391 

upwelling  392 

Recalling that we are ignoring the geothermal heat flux, the complete buoyancy budget, Eqn. 393 

(3), net d dF b , can be integrated with respect to buoyancy,  394 

min
net d

b

b
F b   , (12) 395 

yielding a convenient expression for the area-integrated diffusive buoyancy budget F , where 396 

net BBL SML   is the net diapycnal upwelling transport through both the BBL and the 397 

SML, and the definite integral is performed from the very densest water with buoyancy minb .  In 398 

appendix B it is shown that this expression (12) for F  is equivalent to the volume-integrated 399 

buoyancy budget, Eqn. (B1), for the volume that is less buoyant than the buoyancy value b  in 400 

the global ocean in steady state.   401 

Substituting this expression for F  into Eqn. (11) gives  402 

min
SML net

1
d

b

b
z

b
b d

    . (13) 403 

The lower limit of the integration here is the least buoyant (densest) water in the world ocean 404 

where F  (and hence SML ) is zero since the area of this densest surface tends to zero.   405 

Equation (13) is the key result of this paper; it states that knowledge in the abyssal ocean of 406 

(i) the stratification 
zb , (ii) the vertical e-folding length scale of the diffusive buoyancy flux d , 407 
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and (iii) the net upwelling of AABW as a function of buoyancy,  net b , yields an estimate of 408 

the sinking diapycnal volume flux SML  in the ocean interior.   409 

The diapycnal volume flux in the BBL follows from Eqn. (13) and the volume conservation 410 

equation, net BBL SML  , so that  411 

min
BBL net net

1
d

b

b
z

b
b d

    . (14) 412 

As an initial demonstration of these equations, in this paragraph we will assume that the net 413 

upwelling volume flux net  is independent of height (buoyancy) in the abyss, and define 414 

buoyancy with respect to a Neutral Density value of 328.3 kgm  as  415 

 2 3/ (ms ) 0.01 28.3 / (kg m )b    ,   (15) 416 

where   is Neutral Density (Jackett and McDougall, 1997).  We will assume that the buoyancy 417 

value 
2

min 0 msb   characterizes the densest water in the world ocean.  At a depth of 2500 m 418 

ocean atlases show that 328.05 kg m  , 3 22.5 10 msb x   , 
6 210 szb   , and taking d  to 419 

be 500 m , Eqns. (13) and (14) yield SML net5   and BBL net6 .  In this way, if net  420 

were say 18 Sv then the diapycnal transport in the BBL would be about 108 Sv while the 421 

downwelling in the interior SML would be 90 Sv.   422 

 If instead of assuming that net  is independent of height (buoyancy) in the abyss, we 423 

take it to be a linearly increasing function of buoyancy as suggested by the model studies of 424 

Ferrari et al (2016), then the above ratio of SML  to net  becomes SML net2.5  , closer to 425 

the values of approximately 1.5  seen in Figure 7 of Ferrari et al (2016).  The remaining 426 

discrepancy could be due to the model runs having a larger stratification 
zb  than the 427 

observations or due to the correlation along isopycnals in the SML between the mixing intensity 428 

 , ,b x yB  and the vertical stratification zb  in Eqn. (10).  The ratio 
SML net

 in Figure 9 of 429 

Ferrari et al (2016) is based on applying the Nikurashin and Ferrari (2013) estimate of mixing 430 

induced by breaking topographic waves, and is slightly larger at about SML net 2  (and 431 

hence BBL net 3 ) in the abyss.   432 

In an attempt to be a little more oceanographically realistic we have constructed a specific 433 

function of net  as a function of buoyancy based on Figure 2(a) of Lumpkin and Speer (2007),    434 

net 1 1 exp
b b

C
B A

    
       

    
 , (16) 435 
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where 6 3 125.7 10 m sC x  , 3 27 10 msB x    and 4 26.8 10 msA x    (and using the 436 

relationship between buoyancy and Neutral Density is given by Eqn. (15)).  This function has 437 

net  equal to zero at 
2

min 0 msb   and rises to a maximum value of net 18 Sv  at 438 

3 21.5 10 msb x    which corresponds to a depth of approximately 3000 m.  This functional 439 

form, Eqn. (16), for  net b  is illustrated in Figure 3(a), and its integral 
net

0
d

b

F b   is 440 

shown in Figure 3(b).  The next panel in Figure 3 shows the reciprocal of the area-averaged 441 

values of 
zb  as a function of b  using the hydrographic data of Gouretski and Koltermann 442 

(2004) which we have labeled with Neutral Density  .  Figure 3(d) shows the magnitude of the 443 

right-hand side of Eqn. (13), 
SML

, obtained from multiplying panels (b) and (c) and dividing 444 

by 500md  .  Also shown on Figure 3(d) is 
BBL net SML  , and net  itself.  The ratios 445 

BBL net  and 
SML net

 are  shown in Figure 3(e).  The horizontal b  axis in Figure 3 ranges 446 

from zero up to 3 25 10 msx    but the upper limit of the abyssal ocean, corresponding to a depth 447 

of ~2000 m, is at approximately 3 23.5 10 msb x    ( 327.95 kgm  ).   448 

From Figure 3 we see that while we have taken the maximum value of the net upward 449 

diapycnal transport to be 18 Sv, the maximum diapycnal upwelling in the BBL is 103 Sv and the 450 

downwelling in the interior SML is as large as 86 Sv.  According to our discussion near the end 451 

of section 3, the inclusion of (i) geothermal heating and (ii) weak interior mixing with a 452 

diapycnal diffusivity of 
5 2 110 m s 

, adds a transport that increases from zero at the sea floor to 453 

4.2 Sv at 2000 m (
327.95 kgm   and 

3 23.5 10 msb x   ) to BBL .  The corresponding 454 

change to SML  increases from zero at the sea floor to 2.3 Sv at 2000 m, thus making SML  455 

slightly less negative.   It is clear that while both geothermal heating and weak background 456 

interior diffusion make an appreciable contribution to the net transport net  (of up to 35%), 457 

neither geothermal heating nor weak background interior diffusion makes a material 458 

contribution to BBL  or SML  individually.   459 

In much of the abyssal ocean we have found that the upwelling diapycnal transport in the 460 

BBL, BBL , is approximately 5 times the net upwelling of AABW, net , (Figure 3(e) in the range 461 

3 2 3 210 ms 3.5 10 msb x      or 
3 327.95 kgm 28.2 kgm    which corresponds 462 

approximately to the height range 3500m 2000mz    ).  Such a large amplification 463 

factor describing strong recirculation of abyssal water seems surprising, but it is broadly 464 

consistent with the model findings of Ferrari et al. (2016), depending mainly on how net  varies 465 
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with buoyancy in the abyss.  If in the real ocean each descending plume of AABW sinks all the 466 

way to the densest part of the ocean without significant entrainment or detrainment, then net  467 

will be independent of buoyancy.  If the sinking plumes of AABW entrain fluid from the 468 

environment all the way to the sea floor, then net  will be a decreasing function of buoyancy.  If, 469 

on the other hand, the sinking plumes of AABW detrain substantially above the bottom (a la 470 

Baines (2005)), or if there are multiple sources of AABW of different densities, then net  will 471 

increase with buoyancy in the deepest part of the ocean, as found in the Ferrari et al (2016) 472 

model study.   473 

What aspect of our development could lead to an overestimate of this BBL upwelling 474 

amplification ratio BBL net ?  We see two possibilities.  First, it is possible that the assumed 475 

vertical e-folding scale 500md   is too small.  The second uncertainty is the possible 476 

correlation along isopycnals in the SML between the magnitude of the buoyancy flux per unit 477 

area,  , ,b x yB , and the e-folding vertical buoyancy difference zb b d   in Eqn. (10).   478 

The strong upwelling (of up to 100 Sv) in the BBL in the abyssal ocean, being approximately 479 

5 times the net upwelling of ABBW, is confined to the turbulent boundary layer whose vertical 480 

extent is h  and whose horizontal extent is tanh  .  With 50mh   and with tan 1 / 400  , 481 

this horizontal distance over which the very strong upwelling of ~100 Sv occurs is no wider than 482 

20 km  or about 0.2  of a degree of longitude or latitude, as is sketched in Figure 4.    483 

The strong diapycnal downwelling (of as much as 86 Sv) is confined to the stratified ocean 484 

interior that is mostly between h  and 2d h  above the sea floor.  This region extends from 485 

tanh   to  2 tand h   away from the continental boundaries.   The width of this horizontal 486 

region is 2 tand   and with 500md   and with tan 1 / 400   this horizontal distance over 487 

which the strong downwelling occurs is no wider than 400 km  or 4 degrees of longitude or 488 

latitude, with the magnitude of the downwelling velocity decreasing away from the boundary 489 

towards the ocean interior.   490 

What is the magnitude of the near-boundary diapycnal diffusivity needed to upwell  491 

~100 Sv through isopycnals in the BBL?  From Eqn. (2), we see that   492 

0 0
BBL

1
d d

tan tanz

D
c c

b  
  

B
 , (17) 493 
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where we have ignored the contribution of the geothermal heat flux to 
BBL

 and we have 494 

introduced the diapycnal diffusivity 0 0 zD bB  in the stratified ocean just above the BBL.  495 

Taking the perimeter of the global ocean at this depth to be 75 10 mx  and the average value of 496 

1 tan  to be 400 means that in order to upwell BBL 100 Sv  in the BBL requires the 497 

turbulent diffusivity immediately above the BBL to be approximately 
3 2 1

0 5 10 m sD x   .  This 498 

is a large diapycnal diffusivity, especially given that it represents the average value along an 499 

incrop line, thus requiring even larger values in the locations where the mixing intensity is 500 

largest (near rough topography).  The required diapycnal diffusivity would be reduced if the e-501 

folding vertical length scale is significantly greater than 500m or if there is a significant 502 

correlation (see Eqn. (10)) between the mixing intensity  , ,b x yB  and the vertical 503 

stratification zb  along buoyancy surfaces.   504 

With  100SvO  of upwelling in the BBL and the almost balancing downwelling in the 505 

SML, the average vertical component of the diapycnal velocities would be  4 110 msO  
 and 506 

 6 15 10 msO x    respectively in the BBL and SML, based on the perimeter of the global ocean 507 

being 75 10 mx  and the appropriate horizontal widths of the BBL and SML being 20 km  and 508 

400 km  respectively.   509 

The physical process that causes both the diapycnal volume fluxes BBL  and SML  is the 510 

turbulent diapycnal diffusive buoyancy flux (see Eqns. (2)–(4)), while Eqn. (13) is diagnostic in 511 

nature since it is written in terms of the net diapycnal upwelling rate net  rather than in terms 512 

of the diffusive buoyancy flux.  This diagnostic equation has made use of the steady-state 513 

buoyancy budget which requires the interior density stratification to be consistent with the 514 

area-integrated turbulent diapycnal buoyancy flux 
net

0
d

b

F b   and its derivative d dF b .  515 

The use of this overall buoyancy budget in the expressions for the diapycnal volume fluxes is 516 

the key simplifying feature that has led to Eqn. (13) and the results of Figure 3.  Because of this 517 

use of F  in terms of net  we have not needed to specify the processes that contribute to the 518 

area-integrated diffusive buoyancy flux or its buoyancy derivative d dF b .  This variation of 519 

the magnitude of the area-integrated diffusive buoyancy flux with buoyancy can be due to (i) 520 

the vertical variation of the area available for mixing and/or (ii) it can be due to the values of 0B  521 

at the top of the BBL varying vertically with buoyancy along the sloping sea floor.  In the 522 
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following sections we will discuss some specific geometries in which we can readily calculate 523 

F  and d dF b , thereby evaluating all three diapycnal transports, net , SML  and BBL .   524 

In the following four sections we move beyond the diagnostic relationships, Eqns. (13) and 525 

(14), and derive expressions for the upwelling and downwelling volume fluxes in terms of the 526 

mixing intensity 0B  in oceans of different geometry.  527 

 528 

6.  A two-dimensional global ocean  529 

The first example we consider is where the mixing occurs on a continental boundary that is 530 

two-dimensional in the sense that the length of the perimeter where an isopycnal intersects the 531 

continent is constant, that is, it is the same length over a range of densities.  In this case we may 532 

simplify the expressions (1) and (4) for F  and SML  respectively, and we are able to show that 533 

the mixing activity just above the BBL must increase with buoyancy in order to achieve a net 534 

positive upwelling.  535 

In this two-dimensional situation we take the x  coordinate to be in the horizontal direction 536 

and y  is the coordinate into the page, so to speak; in Figure 2 we may take x  to be to the right 537 

and y  into the page.  The magnitude of the buoyancy flux at the top of the BBL can be 538 

expressed as a function of latitude and longitude,  0 ,x yB , or as a function  0 ,b yB  of 539 

buoyancy and the distance y  “into the page” along the boundary at the top of the turbulent 540 

boundary layer.  The value of  0 ,x yB , at a distance x  from the point a  on Figure 2 is now 541 

expressed as the first two terms in a Taylor series expansion about point a  where the buoyancy 542 

has the value 0b  so that (with z  being the height above the top of the turbulent boundary layer 543 

at a given horizontal location, and noting that tanz x   )  544 

         0 0 0 0 0 0 0, , , tanz zb b
x y b y b z b y b x    B B B B B .   (18) 545 

The magnitude of the buoyancy flux at a general location on the b  buoyancy surface is  546 

     0 0 0, , , tan expzb

z
b x y b y b x

d


 
     

 
B B B ,   (19) 547 

while along the isopycnal surface the area-integrated value of B  is given by  548 

 0 0

tan
d d tan exp d dy,zb

x
F x y b x x

d




 
      

 
 B B B    (20) 549 

where  0 0,b yB  has been replaced by 0B  for notational convenience.  550 
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We now turn our attention to forming the expression for the downwelling volume transport 551 

across the interior part of the isopycnal, SML .  The dianeutral velocity on an isopycnal that is in 552 

the stratified ocean interior is (from Eqn. (6) i.e. z zeb  B  and using Eqn. (19))  553 

 
 0 0 tan

, , exp ,
zb

z

b x z
e b x c

b d d

       
 

B B
  (21) 554 

and taking the area integral of this on the isopycnal gives   555 

 0
SML 0

tan tan
exp d d

b
z

x x
x y

b d d d

    
     

  


B
B . (22) 556 

Taking zb d  to be constant over the isopycnal and then comparing Eqns. (20) and (22) confirms 557 

our previously derived relationship (11), namely that SML ( )zF b d  .   558 

In this two-dimensional geometry the x  integration can be performed independently of 559 

the y  integration, and integrating over x  from zero to infinity and using the two integral 560 

relations  
0

exp d 1s s


   and  
0

exp d 1s s s


   we find (from Eqns. (20) and (22)) F  561 

and SML  to be  562 

 0 0d d
tan tan

zb

d d
F y b d y

 
  B B , 2-dim    (23) 563 

 0
SML 0

1
d d

tan tanb
z

d
y y

b  
   

B
B . 2-dim    (24) 564 

The effective horizontal area on an isopycnal in this 2-dimensional situation where the 565 

diapycnal diffusion is significant is proportional to  tan d ,d y  so that if tand   is 566 

independent of buoyancy, then the area of significant diffusive buoyancy flux is also 567 

independent of buoyancy, that is, constant with height.  Note that the total area of the isopycnal 568 

will increase with height whenever the ocean does not have vertical side walls, but what is 569 

relevant for the buoyancy budget is the area of active mixing in the SML, and whether that area 570 

increases with buoyancy or not.   571 

In this 2-dimensional situation we are able to be quite specific about the spatial variation of 572 

the diffusive buoyancy flux that is needed to achieve net upwelling BWQ .  The first part of the 573 

right-hand side of Eqn. (24) is equal to BBL  (see the general expression for BBL  of Eqn. (2)) 574 

so that in this 2-dimensional situation we find from Eqn. (24) that net  is given by (using 575 

net BBL SML  )  576 
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 net 0 d
tanb

d
y


  B . 2-dim      (25) 577 

This shows that in order for upwelling of Bottom Water to be possible in a 2-dimesnional 578 

situation, the magnitude of the diffusive buoyancy flux at the top of the boundary layer, 0B , 579 

must increase with buoyancy (or height).  That is, in this two-dimensional situation in which the 580 

distance into the page is independent of height, then  0 b
B  being positive is the only way that 581 

the magnitude of the diffusive buoyancy flux F  can increase with buoyancy, thus allowing 582 

netd dF b   to be positive.  One way that  0 b
B  can be positive is if the near-boundary 583 

turbulent diffusivity 0D  is constant and the vertical stratification zb  increases in the vertical, 584 

that is, if 0zzb  .   585 

The need for  0 b
B  to be positive in this two-dimensional geometry is still required even 586 

when the area available for small-scale turbulent diffusion in the SML varies with height (i.e. 587 

when  tan dd y  varies with buoyancy).  If the diffusive buoyancy flux at the top of the 588 

boundary layer, 0B , does not increase in the vertical in this two-dimensional geometry then the 589 

diapycnal volume flux in the BBL,  BBL 0 tan dzb y  B , is exactly balanced by an equal 590 

volume flux 
SML

 sinking through isopycnals in the near-boundary interior ocean, and this 591 

cancellation occurs whether the area of active mixing in the SML varies with buoyancy or 592 

whether it doesn’t.  We will see in the discussion section that while this net 0  case is a valid 593 

local solution, it is not a viable solution in a globally-integrated situation, because the total 594 

downward diffusive flux of buoyancy, F , must be balanced by a net upwards advection of the 595 

stably stratified fluid.   596 

The 2-dimensional geometry of this section, in which properties are independent of the 597 

coordinate into the page, is the one considered by Thorpe (1987) and Garrett (1990, 2001).  These 598 

authors also imposed the diffusive buoyancy flux to be the same across each isopycnal (in our 599 

terminology  0 0
b
B ), and hence our result that there is no net upwelling in this situation is 600 

consistent with their result that the net upwelling per unit distance into the page is tanD  , 601 

since in our case the diffusivity far from the boundary, D , is zero.   602 

 603 

7.  A conical global ocean with constant 0B   604 
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Next we consider a different example where (i) the magnitude of the buoyancy flux per unit 605 

area at the top of the BBL,  0 ,x yB , is independent of latitude and longitude so that it is 606 

simply the constant value 0B  and  0 0
b
B , (ii) the ocean topography is a cone whose surface 607 

of revolution makes a constant angle   to the horizontal, and (iii) the interior stratification zb  is 608 

constant along each isopycnal.  In this case the upward flow in the BBL is still given by Eqn. (2) 609 

which in this geometry is  610 

0
BBL 0

1
d 2

tan tanz z

R
c

b b


 
 

B
B , conical ocean     (26) 611 

where R  is the radius of the cone at the top of the BBL on this buoyancy surface.  The area-612 

integrated value of B  on the isopycnal is  613 

 
0

0
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tan
2 exp d

tan tan
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R r
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d d
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    

B
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 conical ocean     (27) 614 

and the value of SML  is  zF b d .  The net upwelling net  is d dF b  which can be evaluated 615 

by differentiating Eqn. (27) using d d R z zF b F R b  and using the geometry of the conical 616 

ocean which means that 1 tanzR  .  This reasoning leads to  617 

 
net 0 2

d tan
2 1 exp .

d tanz

F d R

b db






  
     

  
B  conical ocean     (28) 618 

This value of net  agrees with calculating it as BBL SML  using the expressions above for 619 

BBL  and SML.    620 

This example shows that when the area of the SML region increases with buoyancy, net 621 

upwelling can occur even when 0B  is constant.  The value of the volume flux ratio BBL net  622 

for this conical ocean is given by the ratio of Eqn. (26) and (28), namely  623 

 
BBL

net

tan

1 exp tan

R d

R d






   
 , conical ocean     (29) 624 

and if the radius R  is significantly larger than tand   then this equation can be approximated 625 

as BBL net tanR d .  In this limit of tanR d  , BBL  is much larger than net and 626 

(from Eqn. (28)) the net upwelling of Bottom Water, net , is independent of the radius R  of the 627 

cone, and so is independent of buoyancy if zb  is constant.  That is, the same net volume flux 628 
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net  upwells through all height levels of the conical ocean.  By contrast, both 
BBL

 and 
SML

 629 

increase linearly with R , that is, increase linearly with height (see Figure 5).   630 

 631 

632 
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8.  A generic seamount  633 

We return here to consider the non-global, non-steady situation of Figure 2 in the specific case 634 

of a seamount.  We take the key feature of a seamount to be that the magnitude of the area-635 

integrated diapycnal diffusive buoyancy flux, F , in the vicinity of the seamount across 636 

isopycnals that intersect the seamount is a decreasing function of height, that is, a decreasing 637 

function of buoyancy.  That is, d d 0F b  .  The reason for this is that for a surface of 638 

revolution about the vertical axis, the interior mixing mainly occurs on an annulus of width 639 

2 tand   whose radius decreases as the top of the seamount is approached.  If 0B  or 1 tan  640 

increased strongly with buoyancy, then d dF b  could still be positive in this depth range for a 641 

seamount, but we consider that this would not occur over a significant depth range on a typical 642 

seamount.  From Eqn. (3), BBL SML net d dF b   , which applies not just globally but 643 

also to a local region such as the region near a seamount, so that we deduce that the net 644 

diapycnal volume flux net  in the vicinity of a seamount is expected to be downwards, as first 645 

pointed out by McDougall (1989).  Hence, given a certain volume flux of AABW BW  that needs 646 

to be upwelled across isopycnals, the continental boundary regions (including both the BBL and 647 

SML regions) must transport more than BW  upwards across isopycnals simply to compensate 648 

for the net downward motion of that part of the ocean that surrounds those seamounts that do 649 

not rise above a depth of 2000m.   650 

The buoyancy budget inside the BBL implies that the flow along this BBL, BBL , must be 651 

upwards, even in the seamount case; that is, our general expression for BBL , Eqn. (2), applies to 652 

the seamount situation.  But the downward diapycnal flow in the stratified interior, SML , is 653 

generally larger in magnitude than BBL  for a seamount.  We now examine the special case of a 654 

conical seamount with a constant diffusive buoyancy flux just above the BBL.   655 

 656 

9. A conical seamount with constant 0B   657 

Here we consider a conical seamount where again (i) the mixing intensity at the top of the BBL 658 

is simply the constant value 0B , (ii) the seamount topography is a cone whose surface of 659 

revolution makes a constant angle   to the horizontal, and (iii) the interior stratification zb  is 660 

constant along each isopycnal.  In this case the upward flow in the turbulent boundary layer is 661 
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given by Eqn. (2) which in this geometry is the same as for the conical global ocean, Eqn. (26), 662 

namely  663 

0
BBL 0

1
d 2

tan tanz z

R
c

b b


 
 

B
B , conical seamount     (30) 664 

where R  is the radius of the cone at the top of the turbulent boundary layer on this buoyancy 665 

surface, with R  decreasing linearly with buoyancy.  The area integrated value of B  on an 666 

isopycnal is  667 
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 conical seamount     (31) 668 

and the value of SML  is  zF db .  The net upwelling of water in the vicinity of the seamount 669 

net  is d dF b  which can be evaluated by differentiating Eqn. (31) using d d R z zF b F R b  670 

and using the geometry of the conical seamount which means that 1 tanzR   .  This 671 

reasoning leads to the following expression for the net diapycnal volume flux in the vicinity of 672 

the seamount,  673 

 
net 0 2

d
2

d tanz

F d

b b



   B . conical seamount     (32) 674 

This value of net  agrees with calculating it as BBL SML  using the expressions above for 675 

BBL  and SML .   676 

This conical seamount example shows that when the area of the interior region of mixing 677 

decreases with buoyancy, net downwelling, net 0 , occurs when 0B  is constant.  The ratio of 678 

the upwelling BBL  in the BBL surrounding the seamount to net  for this conical seamount is 679 

given by the ratio of Eqn. (30) and (32), namely  680 

BBL

net

tanR

d


   . conical seamount     (33) 681 

This ratio has the same magnitude but opposite sign to the value tanR d  of the conical ocean 682 

case (which applies in the limit tanR d ).  The net downwelling volume flux net  in the 683 

vicinity of the seamount is independent of the radius R  of the cone (see Eqn. (32)), and so is 684 

independent of buoyancy.  That is, the same net volume flux net  downwells through all height 685 
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levels of the cone.  By contrast, both 
BBL

 and 
SML

 increase linearly with R , that is, linearly 686 

with depth.   This is illustrated in Figure 6(a).  687 

Notice from Eqn. (32) that the net diapycnal volume flux 
net

 is proportional to  
2

tan


 688 

so that near the top of a realistic seamount (Figure 6(b)) where the bottom slope is small, 
net

 is 689 

large and will tend to decrease towards the middle heights of the seamount where the bottom 690 

slope is the largest, increasing again towards the flanks (the bottom) of the seamount where the 691 

bottom slope is again small.  This would imply that the seamount is a source of fluid at mid 692 

height but a sink for exterior fluid at other heights.  That is, a realistic shaped seamount can act 693 

as both a sink and a source of surrounding seawater at different heights, but on average, since 694 

net  is expected to be predominantly negative in the region of a seamount, the surrounding 695 

seawater is drawn towards the seamount near the top of the seamount, is then made less 696 

buoyant and sinks though isopycnals.   697 

 698 

10.  Requirements for global upwelling; scaling arguments  699 

The global ocean does have AABW rising through the abyss and this implies that the area-700 

integrated buoyancy flux needs to increase with buoyancy (since net d dF b ), and here we 701 

ask what is required of the mixing intensity and the bathymetry in order to ensure that 702 

d d 0F b  .  Since F  is always positive, we examine that ratio  1 d dF F b
.  The area of 703 

active mixing on each isopycnal scales as the horizontal width of the BBL and SML, tand  , 704 

times the perimeter L  of the topography (see Figure 2).  Hence 0 tanF Ld B  so that 705 

 1 d dF F b
 scales as  706 

 
   0

0
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d tan

b bb b
F L d

F b L d
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  

B
B

. (34) 707 

This indicates that there are four different ways that net upwelling can be enabled, namely (i) if 708 

the magnitude of the buoyancy flux at the top of the BBL, 0B , is an increasing function of 709 

buoyancy, (ii) if the length (perimeter) L  is an increasing function of buoyancy, (iii) if the slope 710 

of the sea floor tan  is a decreasing function of buoyancy, and (iv) if the vertical length scale d  711 

is an increasing function of buoyancy.  The influence of the first three of these factors have been 712 

illustrated in the previous sections.  This argument is essentially a linearization of vertical 713 
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changes in the full expression Eqn. (1) for the area-integrated buoyancy flux, but nevertheless, it 714 

seems useful.   715 

 716 

11.  Volume-integrated dissipation  717 

Starting with Munk and Wunsch (1998), the strength of the overturning circulation has been 718 

related to the volume-integrated buoyancy flux generated by turbulent mixing.  Here we 719 

investigate whether the strong diapycnal upwelling along the BBL and the nearly equally 720 

strong diapycnal downwelling in the SML have important implications for the energy budget of 721 

the net overturning circulation.   722 

The volume-integrated value of B  in the global ocean below 2000m is calculated using the 723 

definition Eqn. (1) of F  which is the area integral of B  along an isopycnal, excluding regions 724 

of dense water formation,  725 

net
0

1 1
d d dz = d d d d d d ,

b

z z z

x y x y b F b b b
b b b



        
B

G = B  (35) 726 

where the middle equality is approximate because it has assumed that zb  is uncorrelated with 727 

B  on the buoyancy surface, and the last step has used the relationship 
net

0
d

b

F b   of Eqn. 728 

(12).  The integrand in the last part of Eqn. (35) has essentially already been calculated above, 729 

since, from Eqn. (13) we have 
1

net SML
0

d
b

zb b d


  , and we have plotted 
SML

 in Figure 730 

3(d).  Hence the volume integral of the magnitude of the diffusive buoyancy flux, G , over the 731 

abyssal ocean up to a depth of ~2000m is equivalent to the area under the 
SML

 curve in Figure 732 

3(d) from 0b   up to 
3 23.5 10 msb x   , multiplied by 500md  .  Performing this integral 733 

gives G  to be approximately 8 5 310 m s  and this scales as net b z   where we use a typical 734 

value of 
6 3 1

net 13Sv = 13x10 m s , 3 23.5 10 msb x     and 2300 mz  .   735 

To arrive at the volume-integrated dissipation of turbulent kinetic energy, (i) this interior 736 

volume-integrated diffusive flux of buoyancy must be converted into volume-integrated 737 

dissipation by dividing by the mixing efficiency   for which 0.2 is an appropriate value for the 738 

stratified interior, obtaining the volume integrated dissipation of 0.5TW (after multiplying 739 

0.2G  by 
3 310 kg m

), and (ii) the dissipation in the BBL must be added.  With the vertical 740 

structure of B =  of Figure 1 in mind, the depth-integration of   above the BBL is then 741 

0 0.2dB , and if we assume that   is independent of height within the BBL, then the estimate 742 



Abyssal upwelling and downwelling driven by near-boundary mixing  28 

based on Eqn. (35) (which is 1 5   times this equation) must be multiplied by the ratio 743 

 1 1 50 / 500 1.1h d    .  More measurements of   in the BBL would be needed if this 744 

estimate were to be refined.   745 

This conclusion from this analysis of the total amount of dissipation is that it is 746 

independent of the height scales h  and d  and it is also independent of the bottom slope as 747 

given by tan  but rather scales as net b z  .  So there seems to be no energetic implications of 748 

this near-boundary mixing idea.  That is, there is no energetic implication of the realization that 749 

there is a lot of interior downwelling and a lot of upwelling in the continental boundary layers.  750 

The same energy would be required to upwell a given net volume flux net  through a buoyancy 751 

difference b  and a height difference z  no matter whether the upwelling were occurring 752 

mainly in the ocean interior (with 0z B  and SML 0  and perhaps even with vertical side 753 

walls), or whether there are sloping side walls and a large BBL amplification factor, BBL net , 754 

as seems to be the case in the real ocean.   755 

The reason for this insensitivity of the gravitational potential energy budget to the large 756 

recirculation of diapycnal volume flux,  BBL SML0.5  , is that this large recirculating 757 

volume flux enters the gravitational potential energy budget multiplied by the difference 758 

between the buoyancy in the BBL and in the SML at constant height, and this buoyancy 759 

difference is tiny.   760 

 761 

12.  Discussion  762 

The bottom-intensification of mixing versus the one-dimensional view 763 

The simple one-dimensional upwelling/diffusion balance in the ocean interior with a constant 764 

diapycnal diffusivity implies that the magnitude of the buoyancy flux increases with height, 765 

whereas observations of the dissipation of turbulent kinetic energy in the abyssal ocean show 766 

the opposite.  That is, observations show that the dissipation increases towards the ocean floor, 767 

especially where the bottom topography is rough.  In this paper we have included this bottom 768 

intensification of the diffusive buoyancy flux, and we have assumed a linear equation of state, 769 

thus ignoring the diapycnal downwelling due to thermobaricity and cabbeling.   770 

 771 

Bottom slope and perimeter: balancing influences?  772 
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A cross-section through an ocean basin is sketched in Figure 7 in which the bottom slope tan  773 

decreases with depth.  If the ocean were 2-dimensional (i.e. independent of distance into the 774 

page of Figure 7) the area of active diapycnal near-boundary mixing increases proportionally to 775 

tand  , implying that if  0 ,x yB  were a constant value then the area-integrated buoyancy 776 

flux F  would tend to decrease with height so that netd dF b   would be negative.  777 

Countering this tendency in a more realistic 3-dimensional situation is the fact that the 778 

perimeter (or “circumference”) around the boundary of the ocean on each buoyancy surface is 779 

an increasing function of height (and buoyancy) because ocean basins are better approximated 780 

as being circular than being two-dimensional.  If in fact the sea floor in Figure 7 were the lower 781 

part of a sphere, then the product of the perimeter and the horizontal distance tand   would 782 

be constant, independent of the height of the horizontal cut through the sphere.  In this 783 

situation a constant value of  0 0,x y B B  would give netd d 0F b    which is not a valid 784 

steady-state solution for the abyss.  If on the other hand, the side boundaries of the 3-785 

dimensional ocean have a more or less constant slope, then the geometry more closely 786 

approximates the conical ocean of section 6 and net upwelling would occur even if 787 

 0 0,x y B B  is constant.  This discussion emphasizes the sensitivity of the net diapycnal 788 

volume flux to the details of the area available for active mixing in the SML.  It is fascinating 789 

that in this SML region the diapycnal volume transport is downwards, but the net upwards 790 

diapycnal transport depends sensitively on the vertical variation of the SML area.   791 

 792 

The much increased BBL transport with the bottom intensification of mixing  793 

The large diapycnal upwelling transport in the BBL predicted by this study is here contrasted 794 

with what would be expected without the bottom intensification of mixing intensity.  Consider 795 

a conical ocean as in section 7 but now without the bottom intensification of mixing.  As before 796 

we assume that the stratification zb  is constant along each isopycnal, but it can vary from one 797 

isopycnal to another in the vertical.  The area-integrated buoyancy flux is 
2

zF R Db  where 798 

we will allow the diapycnal diffusivity D  to be a function of buoyancy.  The diapycnal 799 

transport in the BBL is given by Eqn. (2) or (26), namely  800 

BBL 2
tan

D
R


 , conical ocean, interior mixing     (37) 801 
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while the net diapycnal upwelling is given by (using 1 tanzR  ) 802 

net
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The ratio 
BBL net

 is then  804 
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 . conical ocean, interior mixing     (39) 805 

It is not clear what is an appropriate value to take for R  in the abyssal ocean, so we will 806 

consider two values.  With      7 72 5 10 m 2 10 mR L x    , 1tan 400   and 807 

assuming the inverse vertical length scale z zz zD D b b  to be dominated by zz zb b  of about 808 

 
1

1000m


, we find that  
1

BBL net 1 12.5


   implying that only 7.4% of the net diapycnal 809 

upwelling occurs in the BBL.  Taking 610 mR   gives  
1

BBL net 1 1.25 0.44


    810 

implying that 44% of the net diapycnal upwelling occurs in the BBL.  These values for BBL net  811 

contrast with the value five found in the present paper for bottom-intensified diapycnal mixing, 812 

that is, we have found that the BBL carries 500% of the net diapycnal upwelling net  in the 813 

abyssal ocean.  These very different estimates of the ratio BBL net  are due to the bottom 814 

intensification of mixing activity in the present case.  By contrast, when the diapycnal mixing is 815 

assumed to occur uniformly along density surfaces, the whole area of the isopycnal contributes 816 

to the diapycnal diffusive buoyancy flux.   817 

 818 

The case where F is depth-independent  819 

The special case when the magnitude of the area-integrated diffusive buoyancy flux F  is 820 

independent of buoyancy is here shown to be incompatible with a global steady state.  In this 821 

case we have BBL SML netd d 0F b      (from Eqn. (3)) so that the local downwelling 822 

in the stratified interior SML is equal to the local upwelling in the BBL.  This is a perfectly 823 

acceptable balance for a localized region of mixing, but for a globally integrated situation, 824 

having no net diapycnal upwelling ( net 0 ) is incompatible with a steady-state solution in 825 

which there is vertical stratification in the abyss since a strictly positive mean diapycnal volume 826 

flux, net 0 , is needed to balance the diffusive buoyancy flux F  that enters the volume that 827 

is bounded above by the b  buoyancy surface (see Eqn. (B1) of appendix B where the volume-828 

integrated buoyancy budget requires that net  be positive since F  is positive).   829 
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 830 

Implications for the Stommel-Arons abyssal circulation  831 

What are the implications of our results for the Stommel-Arons circulation?  Some of the 832 

implications of ocean hypsometry have been already been pointed out by McDougall (1989) (see 833 

Eqns. (15) – (16) and figure 6 therein) and by Rhines (1993) (see pages 137-140 and figures 19 834 

and 20 therein).  These authors pointed out that if the diapycnal upwelling is assumed to be 835 

uniformity distributed over isopycnals, then both (i) the increasing area of isopycnals with 836 

height and (ii) entrainment into the sinking plume of AABW, induce vortex stretching in the 837 

ocean interior of the opposite sign of Stommel-Arons.  In the present work we have explored 838 

the implications of the bottom-intensified nature of diapycnal mixing and we have shown that 839 

the effects of this bottom-intensification on the structure of the diapycnal velocity varies both 840 

laterally and vertically, resulting in a complex pattern of stretching and squeezing of water 841 

columns.   842 

Imagine an ocean basin that is roughly circular with most of the inner area exhibiting 843 

neither diapycnal upwelling nor downwelling but with an annulus of width of 4  exhibiting 844 

strong diapycnal downwelling of ~80 Sv, and an even thinner ( 0.2 ) outer annulus right 845 

against the continent in which there is strong upwelling of ~100 Sv.  This is illustrated in Figure 846 

4.  Within the region of diapycnal downwelling, the downwards diapycnal velocity increases in 847 

magnitude with depth, implying vertical vortex stretching of the same sign as Stommel-Arons 848 

(i.e. 0ze  ).  The full implications of this vortex stretching clearly needs further research.  849 

Rhines’ (1993) very nice review ended with the phrase “Pointed study of ‘in-cropping’ is called 850 

for”.  The present paper, de Lavergne et al. (2016) and Ferrari et al. (2016) may be regarded as 851 

some small steps in that direction.   852 

 853 

Sensitivity of ocean models to d  854 

In a numerical study Oka and Niwa (2013)  found that the deep Pacific circulation was sensitive 855 

to the choice of the vertical scale height d  over which the near-boundary diapycnal mixing 856 

varied.  The sensitivity can be explained as being due to the area of significant diapycnal mixing 857 

on each isopycnal being proportional to d  through the horizontal length scale tand   (see 858 

Figure 2b and Figure 7).  This implies that the area-integrated diffusive buoyancy flux F  (and 859 
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hence 
net

0
d

b

b ) varies proportionally with d .  The same proportionality with d  applies to 860 

the magnitude of the volume-integrated buoyancy flux.  If the volume-integrated buoyancy flux 861 

were kept constant as d  was changed in a forward numerical ocean model by making 862 

 0 ,x yB  (or perhaps the diapycnal eddy diffusivity) at the top of the turbulent boundary layer 863 

be proportional to 
1d 
, we expect that the net overturning circulation would be rather 864 

insensitive to the vertical e-folding length scale d .   865 

 866 

13.  Conclusions  867 

 A Walin-like buoyancy budget has been performed on volumes bounded by buoyancy 868 

surfaces that intersect the sea floor.  We have incorporated the observed increase of 869 

diapycnal mixing intensity in the stratified interior towards the sea floor; this downwards 870 

increase in mixing drives downwards diapycnal advection in the stratified fluid.  We also 871 

prescribed that the buoyancy flux becomes zero (or to match the geothermal heat flux) at 872 

the bottom of a turbulent bottom boundary layer (BBL) right above the sea floor; this 873 

downwards decrease in the magnitude of the buoyancy flux in the BBL drives an upwards 874 

diapycnal advection along sloping bottom boundary layers.   875 

 The upward diapycnal volume transport in the turbulent bottom boundary layer (BBL) is 876 

typically several times as large as the net upwelling of AABW in the abyss.   877 

 This implies that there is substantial cancellation between the large upwelling in the BBL 878 

and the (almost as large) downwelling in the stratified mixing layer (SML) that lies in the 879 

stratified ocean but is near the sea floor where the diapycnal mixing is significant.   880 

 The buoyancy budget for the whole volume below a certain buoyancy surface is given by 881 

Eqn. (12) which shows that the magnitude of the area-integrated diffusive buoyancy flux 882 

across this buoyancy surface is equal to the integral with respect to buoyancy of the net 883 

diapycnal upwelling throughout the ocean below this buoyancy surface.   884 

 The main findings of this paper are the simple relations Eqns. (13) and (14) that have been 885 

used to estimate that the volume flux upwelling in the turbulent bottom boundary layers 886 

(BBLs) globally is as much as five times the net dianeutral upwelling of bottom waters in 887 

the abyss, and that the near-boundary diapycnal sinking in the SML is as much as four 888 

times this net upwelling.  The amplification factor, BBL net , was found to be between 2 889 
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and 3 in Ferrari et al (2016), and it depends on the way that the net dianeutral upwelling, 890 

net , varies with height (or buoyancy) in the abyss (as can be seen in Eqn. (14)).   891 

 Our approach has been based on the buoyancy equation, so that the large epineutral 892 

advection and diffusion processes do not enter or complicate our method.  While these 893 

strong epineutral processes are invisible to our approach, they will be effective in 894 

spreading any tracer signature of the near-boundary mixing processes into the ocean 895 

interior.   896 

 The circulation we find is driven by the diffusive flux of buoyancy in the stratified 897 

interior ocean, with the magnitude of the buoyancy flux being strongest near the BBL.  898 

This is very different to previous boundary mixing theories where the mixing was 899 

assumed to originate at the boundary itself and was often mostly very near the boundary 900 

in water that is very weakly stratified.   901 

 We have shown that in order to upwell 100 Sv  across isopycnals in the BBL, the 902 

turbulent diffusivity immediately above the BBL must be approximately 903 

3 2 1

0 5 10 m sD x    on average along the incrop line of a buoyancy surface.  Clearly, this 904 

is a large diapycnal diffusivity, and it remains to be seen if this will prove to be a realistic 905 

estimate.   906 

 907 
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Appendix A:  Diapycnal volume fluxes caused by interior diffusive buoyancy fluxes and  919 

by geothermal heating  920 

Here we analyze the volume and buoyancy budgets for (i) the turbulent bottom boundary 921 

layer (BBL) region contained between a pair of buoyancy surfaces of Figure 2(a), and (ii) for the 922 

full shaded volume Figure 2(b) which contains both the BBL and the stratified mixing layer 923 

(SML) in which the diapycnal mixing is significantly non-zero.  The upper buoyancy surface 924 

attracts the label u while l stands for the lower buoyancy surface.  These volume integrated 925 

buoyancy budgets are an application of the Walin (1982) methodology, applied to the geometry 926 

of the bottom boundary and near-boundary regions; the Walin methodology is more commonly 927 

applied to the outcropping of isopycnals at the sea surface.   928 

The epineutral advection of water into the shaded region of Figure 2(a) from the interior 929 

ocean is labeled BBLepiQ  and the conservation of volume for this region is (without assuming it 930 

is in steady state)  931 

 BBL BBL BBL BBL

l u

epit
V Q   ,  (A1) 932 

while the buoyancy budget is  933 

    1 1
BBL BBL BBL BBL2 2

l u l l u u l u geo

epit
b b V b b b b Q F      D ,  (A2) 934 

where D  is the diffusive buoyancy flux entering at the top of the BBL, being the area integral 935 

of the corresponding non-advective buoyancy flux per unit horizontal area between points a  936 

and b  (and into the page) at the top of the BBL,  0 , cosx y B .  The buoyancy flux entering 937 

the BBL across the sea floor, geoF , is g  times the corresponding flux of Conservative 938 

Temperature, so that geoF  is (from appendix A.21 of IOC et al. (2010)) the geothermal heat flux 939 

(in Watts) times  ˆg h    where g  is the gravitational acceleration,   is the thermal 940 

expansion coefficient with respect to Conservative Temperature,   is in situ density and ĥ  is 941 

the partial derivative of specific enthalpy with respect to Conservative Temperature at constant 942 

Absolute Salinity and pressure; see appendix A.21 of IOC et al. (2010).  This partial derivative is 943 

given by (from McDougall (2003))    0

0 0
ˆ

ph c T t T      (where 0 273.15 KT  ,   is the 944 

potential temperature and t  is the in situ temperature, both on the Celsius temperature scale) 945 

which varies very little from the constant value 
0 1 13991.867 957 119 63 J kg Kpc    946 

defined by TEOS-10.  Even at a depth of 4000m  ĥ  is different to 
0

pc  by only 0.15%; by 947 
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comparison, the uncertainty in the thermal expansion coefficient is 1%  (the r.m.s. uncertainty 948 

in the thermal expansion coefficient is 6 10.73 10 Kx   , see appendix K of IOC et al (2010)).  949 

Hence we take  ˆg h    to be  0

pg c  .  If the geothermal heat flux per unit of exactly 950 

horizontal area is 2WmJ   then the geothermal buoyancy flux per unit area of sloping seafloor 951 

is cosG   where G  is defined to be the flux of buoyancy into the ocean per unit of exactly 952 

horizontal area due to the geothermal heat flux,  0

pG g J c  .   953 

Subtracting  1
2

u lb b  times Eqn. (A1) from Eqn. (A2) and taking the limit as 954 

  0u lb b b     so that  1
BBL BBL BBL2

l u   we find  955 

BBL

geob F   D .  (A3) 956 

Neither the unsteadiness of the situation nor the existence of the epineutral volume flux BBLepiQ  957 

affects this simple balance between the sum of the area-integrated geothermal heat flux geoF  958 

and the “diffusive” (that is, the “non-advective”) area-integrated buoyancy flux D  being 959 

balanced by the advective volume flux BBL  of the fluid in the BBL towards less dense water.  960 

These geothermal and diffusive buoyancy fluxes geoF  and D  are both fluxes of buoyancy into 961 

the BBL and they can be expressed as the area integral of the corresponding fluxes per unit of 962 

the sloping area between points a  and b  at the top of the turbulent boundary layer, cosG   963 

and 0 cosB .  The element of area integration, per unit distance into the page of Figure 2, is 964 

 sinzb b  , so that the geothermal buoyancy flux and the diffusive buoyancy flux D  are  965 

1
d

tan

geo

z

G
F b c

b 
              and          0 1

d
tanz

b c
b 

  
B

D , (A4) 966 

where c  is the distance measured “into the page” of Figure 2 along the boundary at the top of 967 

the turbulent boundary layer.  Substituting geoF  and D  from Eqn. (A4) into Eqn. (A3) gives  968 

0
BBL

1
d

tanz

G
c

b 


 

B
 . (A5) 969 

Note that this expression for the upward volume flux in the BBL, BBL , is independent of the 970 

vertical distance d  over which the dissipation decreases in the vertical.  This result of the 971 

buoyancy and volume budgets is an application of the Walin (1982) approach to this control 972 

volume, where we have ignored any diapycnal diffusion of buoyancy along the direction of the 973 

boundary in the BBL because the gradient of buoyancy in this direction is so small at sinzb   974 
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and the lateral distance over which this buoyancy flux varies is so much larger than the 975 

thickness of the boundary layer.   976 

In the above derivation we have taken the element of area integration, per unit distance 977 

into the page of Figure 2, to be  sinzb b  , and this is a linearization which clearly fails when 978 

sin  approaches zero.  A more accurate derivation of Eqn. (A5) would stay closer to the Walin 979 

(1982) approach (see for example Marshall et al. (1999)) giving  980 

 
 BBL 0

d
d

d inA b b
G A

b 
  B  , (A6) 981 

where the area integral is taken over all the ocean floor (in-crop area) in this region that has 982 

buoyancy less than b .  Again, G  and 0B  are the buoyancy fluxes per unit of exactly horizontal 983 

area and d d dyA x  is the element of exactly horizontal area; this convention is not 984 

fundamental or important; it is done simply because ocean models have latitude and longitude 985 

as coordinates.  We will use the linearized formulation, Eqn. (A5), in this paper, but it should be 986 

understood that this is just a convenient way of writing the exact expression, Eqn. (A6), for 987 

BBL .   988 

Note that 0 zbB  in Eqn. (A5) is the value of the diapycnal diffusivity in the stratified fluid 989 

just above the BBL, 0D , and Eqn. (A5) implies that the diapycnal transport in the BBL due to 990 

diapycnal diffusion, per unit length into the page, is proportional to this diapycnal diffusivity 991 

0D  and inversely proportional to the slope tan  of the sea floor.  This is reminiscent of Thorpe 992 

(1987) and Garrett’s (1990) results for their diapycnal transport streamfunction 993 

 tanD    due to near-boundary mixing, although their result was based on a two-994 

dimensional ocean geometry which was uniform into the page, with their buoyancy frequency 995 

being independent of height and with the diapycnal diffusivity being a function only of 996 

distance from the sloping boundary; D  was the diapycnal diffusivity far from the boundary.  997 

We have made none of these assumptions, and by contrast, our result Eqn. (A5) applies only to 998 

the part of the diapycnal transport that occurs in the BBL.   999 

We now write budget statements for volume and buoyancy for the volume of shaded fluid 1000 

between the two isopycnals in Figure 2(b).  This control volume includes both the fluid in the 1001 

turbulent bottom boundary layer (BBL) and the fluid in the ocean interior in which there is 1002 

significant non-zero dissipation (the SML).  In practice we can think of this region as extending 1003 
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to a horizontal distance where the buoyancy surface is say 2d  above the top of the BBL.  At that 1004 

location the magnitude of the vertical flux of buoyancy is quite small at 1005 

 0 0exp 2 0.135 B B , assuming an exponential function of height with vertical scale height 1006 

d .  The volume V  of the control volume is allowed to change with time, and it receives the 1007 

volume flux epiQ  at the average buoyancy  1
2

l ub b  by epineutral advection from the 1008 

adiabatic interior ocean.  The volume budget is  1009 

BBL BBL SML SML

l u l u

t epiV Q     ,   (A7) 1010 

while its buoyancy budget is  1011 

   1 1
BBL BBL SML SML2 2

l u l l u u l l u u u l geo l u

t epib b V b b b b F F F b b Q          ,1012 

 (A8) 1013 

where the volume-averaged buoyancy of the shaded fluid,  1
2

l ub b , does not vary with time 1014 

as we are following these same two buoyancy surfaces through time.  Technically we should 1015 

include a diffusive flux of buoyancy across the area between points c  and d  but we assume 1016 

that the diffusive buoyancy flux here has diminished to a near-zero value which we ignore.  1017 

From the buoyancy budget (Eqn. (A8)) is now subtracted  1
2

l ub b  times the volume 1018 

conservation equation (A7) obtaining  1019 

     1 1
BBL BBL SML SML2 2

u l l u u l u l geob b F F F       
 

. (A9) 1020 

Taking the limit as the buoyancy difference between the surfaces tends to zero, we have  1021 

net BBL SML

d 1
d

d tanz

F G
c

b b 
      , (A10) 1022 

where d dF b  is the rate at which the isopycnally area-integrated magnitude of the turbulent 1023 

diffusive buoyancy flux F  (see Eqn. (1)) varies with respect to the buoyancy label b  of the 1024 

isopycnals, while the corresponding quantity for the geothermal buoyancy flux, namely 1025 

geoF b  in the limit 0b  , has been written using Eqn. (A4).   1026 

The key results of this appendix, Eqns. (A5) and (A10), are the Walin buoyancy budget 1027 

approach applied to this geometry (see also Garrett et al. (1995) and Marshall et al. (1999) for 1028 

clear expositions of the Walin approach to volume-integrated buoyancy budgets).  The new 1029 

feature is that we have separated the budgets into the region of the BBL where the diapycnal 1030 

transport is always positive BBL 0  (both due to the geothermal heat flux and to the interior 1031 
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mixing processes) and the near-boundary stratified mixing layer (SML) of the interior where we 1032 

will see that the diapycnal transport is always negative, SML 0 .  The simplifications that we 1033 

have been able to make are (i) that the diffusive flux of buoyancy along the boundary in the BBL 1034 

is tiny (and its divergence is even smaller by a factor of order 
20.5 sin zz zh b b  compared 1035 

with the 0B  term) so this flux has been ignored, and (ii) because the interior mixing intensity is 1036 

taken to decay in the vertical, it also decays along a buoyancy surface sufficiently far from the 1037 

boundary and this has enabled us to ignore any diffusion of buoyancy on the right-hand side of 1038 

the shaded fluid in Figure 2(b).  In this paper we have not concentrated on the physical 1039 

processes that cause the vertical profile of the turbulent buoyancy flux, so that for example, the 1040 

intriguing and asymmetric physics of the arrested Ekman layer effect (Garrett et al. (1993)) 1041 

could be regarded as being part of our formulation only if its turbulent buoyancy fluxes were 1042 

regarded as having been included as a contributor to our assumed exponential decay of the 1043 

magnitude of the buoyancy flux with height above the BBL.   1044 

While the sketch shown in Figure 2 shows the isopycnals to be normal to the boundary 1045 

throughout the BBL, this is not a requirement of these buoyancy budgets.  The surfaces of 1046 

constant buoyancy can be drawn as smooth curves and the results of this appendix continue to 1047 

apply.  The buoyancy budgets in this paper rely on separating the BBL and SML regions.  These 1048 

regions are separated by the line along which the diapycnal velocity is zero, with the diapycnal 1049 

velocity being positive in the BBL and negative in the SML.  That is, the BBL and SML regions 1050 

are separated by the height of the maximum magnitude of the buoyancy flux per unity area as a 1051 

function of height on Figure 1.  Clearly at this height the vertical stability zb  must be non-zero, 1052 

for otherwise the mixing efficiency and the magnitude of the buoyancy flux would be zero 1053 

rather than being a maximum.   1054 

Eqns. (A5) and (A10) provide expressions for the diapycnal volume transports in (i) the BBL, 1055 

BBL , and (ii) across the entire isopycnal in this region, net .  The difference between these two 1056 

equations provides an expression for the diapycnal transport across the SML of the same 1057 

isopycnal, namely  1058 

0
SML

d 1
d

d tanz

F
c

b b 
  

B
 . (A11) 1059 
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This same equation can be found by performing the above Walin-type buoyancy budget for the 1060 

shaded fluid in the SML of Figure 2(b), this is, for the shaded region of that figure, but 1061 

excluding the part in the BBL.  This SML region of Figure 2 has the diffusive buoyancy flux D  1062 

exiting across the boundary a-b so that the SML loses buoyancy diffusively at the rate 1063 

l uF F D , and even in the simple case where uF  and lF  are equal, the interior SML fluid 1064 

suffers a diffusive loss of buoyancy.  This net diffusive loss of buoyancy, l uF F D , may 1065 

seem counter-intuitive in a steady-state situation, but it is balanced by the advective gain of 1066 

buoyancy since the diapycnal volume transport SML  is negative (that is, downward flow 1067 

through isopycnals).  1068 

Eqn. (A11) states that knowledge of both d dF b  and the diffusive buoyancy flux just 1069 

above the BBL, 0B , is sufficient to give the diapycnal volume flux in the SML, SML .  In the text, 1070 

we have a different expression for SML , Eqn. (7), which is written as the integral of z zbB  over 1071 

the area of a buoyancy surface in the SML.  Are these equations (7) and (A11) consistent?  1072 

Combining these equations while using Eqn. (A6) and the definition of F  of Eqn. (1)) we find  1073 

 
 

  0

d d
d d

, ,
d d , d

d
, dy

d inA

z

b b
z

b x
x y x

b

y
x y b x y

b b 
   

B
B B . (A12) 1074 

Here we will show that this equation is a mathematical truism (that is, it is obeyed by any 1075 

 , ,b x yB  field) with no predictive value per se, so that we conclude that Eqns. (7) and (A11) 1076 

are consistent with each other.  Writing the negative of the buoyancy flux  , ,b x yB  more 1077 

generally as the three-dimensional vector B , the left-hand side of Eqn. (A12) is the area 1078 

integral on a buoyancy surface in the SML of b B , and using Gauss’ divergence theorem 1079 

the right-hand side can be written in terms of a volume integral of B  in the SML region, so 1080 

that Eqn. (A12) is equivalent to the standard mathematical result (see Marshall et al. (1999))  1081 

 
 

 
 

d

d

,
d d,

A b V b b
A V

b

a t
a t

b 
 

x
x . (A13) 1082 

where in our case  ,a t  x B ,  A b  is the area of the b  buoyancy surface in the SML and 1083 

 V b b   is the volume of seawater in the SML region that lies below the b  buoyancy surface, 1084 

that is, it is the volume that lies below the b  buoyancy surface, but excludes the BBL.   1085 

 1086 

1087 
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 Appendix B:  Steady-state volume-integrated buoyancy budget  1088 

Consider the steady-state situation in which a plume of very dense AABW sinks through the 1089 

stratified ocean as shown in Figure 8.  The control volume we consider in this appendix is below 1090 

the buoyancy surface b  in the BBL, SML and ocean interior, and is then extended horizontally 1091 

to the ocean boundary through the sinking AABW plume.  In the body of this paper and in 1092 

appendix A, the sinking AABW plume region has not been separately considered.   1093 

The volume flux rising through the non-plume part of the b  surface is net  and in a steady 1094 

state this is equal to the volume flux of the sinking very dense AABW plume that punches 1095 

through a small part of the upper surface of the control volume.  The buoyancy budget for the 1096 

whole control volume represents the balance between the diffusive flux of buoyancy F  that 1097 

enters the top of the control volume being balanced by the advection of buoyancy out of the 1098 

control volume due to the volume flux net  entering at one (small) value of buoyancy, BWPb , 1099 

and leaving at another, namely at b .  That is, the volume-integrated buoyancy budget is  1100 

   net BWPF b b b b    , (B1) 1101 

where both the volume flux of the AABW plume net  and its average buoyancy BWPb  can be 1102 

regarded as being functions of the interior buoyancy b  at the same height.  This is a different 1103 

expression to Eqn. (12) in the text, namely 
min

net d
b

b
F b  , and in order to prove that they are 1104 

consistent we need to prove that the buoyancy derivative of Eqn. (B1) is net .  1105 

From plume theory in a stratified fluid (e.g. Eqns. (2) – (3) of Morton et al., 1956) the 1106 

buoyancy budget of the entraining dense AABW plume can be cast in terms of the derivatives 1107 

with respect to buoyancy as  1108 

     net BWP net
d d

d d
b b b b b

b b
       ,  (B2) 1109 

and this applies whether the AABW plume is entraining or detraining (Baines, 2005).  1110 

Differentiating Eqn. (B1) with respect to b  and using Eqn. (B2) shows that netd dF b   and 1111 

hence the volume-integrated buoyancy budget Eqn. (B1) is consistent with Eqn. (12), namely 1112 

min
net d

b

b
F b  .   1113 

1114 
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Figure Captions  1199 

Figure 1.  In the deep ocean each vertical cast is assumed to have the magnitude of the diffusive 1200 

buoyancy flux  B  start at zero at the sea floor and to increase with height in the turbulent 1201 

bottom boundary layer (BBL) to a maximum value of 0B  at the top of the BBL of thickness h , 1202 

and then decrease exponentially towards zero as  0 exp z dB  where z  is the height above 1203 

the top of the turbulent boundary layer.   1204 

 1205 

Figure 2.  The geometry of the near-boundary mixing region, concentrating on the volume 1206 

between two closely-spaced buoyancy surfaces.  The turbulent bottom boundary layer (BBL) 1207 

against the solid boundary has thickness h .  The area integral of the diffusive flux of buoyancy, 1208 

whose magnitude is F , is directed downwards while the diapycnal velocity e  and the 1209 

diapycnal volume fluxes SML  and BBL  are defined positive upwards.  Panel (a) shows the 1210 

fluxes required to establish the buoyancy budget for the turbulent bottom boundary layer (BBL) 1211 

while panel (b) shows the corresponding terms needed for the buoyancy budget for the whole 1212 

shaded near-boundary region that includes the BBL.   1213 

 1214 

Figure 3.  (a) The net upwelling transport, net  of Eqn. (16), as a function of buoyancy, b , 1215 

defined in terms of Neutral Density,  , by  2 3/ (ms ) 0.01 28.3 / (kg m )b    .  (b)  The 1216 

magnitude of the area-integrated diffusive buoyancy flux F , as estimated as the buoyancy 1217 

integral 
net

0
d

b

F b   of panel (a).  (c) The reciprocal of the area-averaged values of 
zb  as a 1218 

function of b  from the hydrographic data of Gouretski and Koltermann  (2004).  (d) The 1219 

diapycnal volume transport 
SML

 evaluated from Eqn. (13) as essentially the product of panels 1220 

(b) and (c).  Also shown are BBL  from Eqn. (14)  and net  is repeated from panel (a).  (e)  The 1221 

ratios BBL net  and SML net  as a function of buoyancy.   1222 

 1223 

Figure 4.  Sketch of the spatial distribution of the intense upwelling hard up against the 1224 

boundary (arrow point in circle) and downwelling (the crossed feathers at the trailing end of 1225 

the arrow inside the circles) in a canonical northern hemisphere ocean.  The interior of each 1226 

isopycnal has no dianeutral motion while there is downwelling only within approximately 4  1227 
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(~ 400 km ) of the boundary and very strong upwelling within just 0.2  (~ 20 km ) of the 1228 

continental boundaries.  With  100SvO  of upwelling in the BBL and downwelling in the 1229 

SML, the average vertical component of the diapycnal velocities would be  4 110 msO  
 and 1230 

 5 110 msO    in the BBL and SML respectively.   1231 

 1232 

Figure 5.  Sketch of the a conical ocean with a constant value of 0B  at the top of the turbulent 1233 

boundary layer.  The upward diapycnal flow in the turbulent boundary layer BBL  increases 1234 

with height while the downwards diapycnal flow in the stratified near-seamount interior, SML , 1235 

also increases in magnitude with height.  The diapycnal velocities are independent of height in 1236 

both the BBL and the SML (if zb  is constant).  The net upwelling net  in the abyssal ocean 1237 

indicated here is balanced by a sinking plume of AABW that is not shown in the sketch.   1238 

 1239 

Figure 6.  (a) Sketch of a conical seamount with a constant value of 0B  at the top of the 1240 

turbulent boundary layer.  The upward diapycnal flow in the turbulent boundary layer BBL  1241 

decreases to zero at the top of the seamount while the downwards diapycnal flow in the 1242 

stratified near-seamount interior, SML , also decreases in magnitude with height.  The 1243 

diapycnal velocities are independent of height in both the BBL and the SML (if zb  is constant).  1244 

(b) A more realistic (non-conical) seamount cross-section is sketched, again with a constant 1245 

value of 0B .  The dependence of the net diapycnal volume flux net BBL SML   (which is 1246 

negative for a conical seamount) on the bottom slope tan  may lead to the smallest values of 1247 

net
 being found at mid-depth where the bottom slope tan  is largest, with larger magnitudes 1248 

of net  both above and below this mid depth.   1249 

 1250 

Figure 7. Sketch of a cross-section through an ocean basin whose bottom slope decreases with 1251 

depth.  The length in this plane on which significant diapycnal mixing occurs is proportional to 1252 

tand   and this is shown increasing with depth ( d  is constant in this figure).   1253 

 1254 

Figure 8.  An ocean cross-section through the sinking very dense Bottom Water Plume whose 1255 

buoyancy is BWPb .  With the ocean in a steady state, the volume transport of the Bottom Water 1256 

Plume is equal to the net diapycnal upwelling throughout the rest of the ocean, 1257 
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net BBL SML  .  In the buoyancy budget analysis of appendix A we have considered the 1258 

diffusive and advective fluxes of buoyancy across the buoyancy surface in the BBL and 1259 

throughout the stratified ocean interior, but excluding the region inside the sinking Bottom 1260 

Water Plume.  The volume integrated buoyancy budget of Eqn. (B1) of appendix B applies to 1261 

the volume beneath the same buoyancy surface in the BBL and the stratified ocean interior, and 1262 

in this case the surface is completed by extending it horizontally through the sinking Bottom 1263 

Water Plume as shown in the figure.   1264 

 1265 

 1266 

1267 
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 1268 

 1269 

 1270 

Figure 1.  In the deep ocean each vertical cast is assumed to have the magnitude of the diffusive 1271 

buoyancy flux  B  start at zero at the sea floor and to increase with height in the turbulent 1272 

bottom boundary layer (BBL) to a maximum value of 0B  at the top of the BBL of thickness h , 1273 

and then decrease exponentially towards zero as  0 exp z dB  where z  is the height above 1274 

the top of the turbulent boundary layer.   1275 

 1276 

 1277 

1278 
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 1279 

 1280 

 1281 

Figure 2.  The geometry of the near-boundary mixing region, concentrating on the volume 1282 

between two closely-spaced buoyancy surfaces.  The turbulent bottom boundary layer (BBL) 1283 

against the solid boundary has thickness h .  The area integral of the diffusive flux of buoyancy, 1284 

whose magnitude is F , is directed downwards while the diapycnal velocity e  and the 1285 

diapycnal volume fluxes SML  and BBL  are defined positive upwards.  Panel (a) shows the 1286 

fluxes required to establish the buoyancy budget for the turbulent bottom boundary layer (BBL) 1287 

while panel (b) shows the corresponding terms needed for the buoyancy budget for the whole 1288 

shaded near-boundary region that includes the BBL.   1289 

 1290 

 1291 

1292 
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 1293 

 1294 

Figure 3.  (a) The net upwelling transport, net  of Eqn. (16), as a function of buoyancy, b , defined in 1295 

terms of Neutral Density,  , by  2 3/ (ms ) 0.01 28.3 / (kg m )b    .  (b)  The magnitude of the 1296 

area-integrated diffusive buoyancy flux F , as estimated as the buoyancy integral 
net

0
d

b

F b   1297 

of panel (a).  (c) The reciprocal of the area-averaged values of 
zb  as a function of b  from the 1298 

hydrographic data of Gouretski and Koltermann  (2004).  (d) The diapycnal volume transport 
SML

 1299 

evaluated from Eqn. (13) as essentially the product of panels (b) and (c).  Also shown are BBL  from 1300 

Eqn. (14)  and net  is repeated from panel (a).  (e)  The ratios BBL net  and SML net  as a function 1301 

of buoyancy.   1302 

1303 
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 1304 

 1305 

Figure 4.  Sketch of the spatial distribution of the intense upwelling hard up against the 1306 

boundary (arrow point in circle) and downwelling (the crossed feathers at the trailing end of 1307 

the arrow inside the circles) in a canonical northern hemisphere ocean.  The interior of each 1308 

isopycnal has no dianeutral motion while there is downwelling only within approximately 4  1309 

(~ 400 km ) of the boundary and very strong upwelling within just 0.2  (~ 20 km ) of the 1310 

continental boundaries.  With  100SvO  of upwelling in the BBL and downwelling in the 1311 

SML, the average vertical component of the diapycnal velocities would be  4 110 msO  
 and 1312 

 5 110 msO    in the BBL and SML respectively.   1313 

 1314 

 1315 

 1316 

Figure 5.  Sketch of the a conical ocean with a constant value of 0B  at the top of the turbulent 1317 

boundary layer.  The upward diapycnal flow in the turbulent boundary layer BBL  increases 1318 

with height while the downwards diapycnal flow in the stratified near-seamount interior, SML , 1319 

also increases in magnitude with height.  The diapycnal velocities are independent of height in 1320 

both the BBL and the SML (if zb  is constant).  The net upwelling net  in the abyssal ocean 1321 

indicated here is balanced by a sinking plume of AABW that is not shown in the sketch.   1322 

1323 



Abyssal upwelling and downwelling driven by near-boundary mixing  51 

 1324 

 1325 

 1326 

 1327 

Figure 6.  (a) Sketch of a conical seamount with a constant value of 0B  at the top of the 1328 

turbulent boundary layer.  The upward diapycnal flow in the turbulent boundary layer BBL  1329 

decreases to zero at the top of the seamount while the downwards diapycnal flow in the 1330 

stratified near-seamount interior, SML , also decreases in magnitude with height.  The 1331 

diapycnal velocities are independent of height in both the BBL and the SML (if zb  is constant).  1332 

(b) A more realistic (non-conical) seamount cross-section is sketched, again with a constant 1333 

value of 0B .  The dependence of the net diapycnal volume flux net BBL SML   (which is 1334 

negative for a conical seamount) on the bottom slope tan  may lead to the smallest values of 1335 

net  being found at mid-depth where the bottom slope tan  is largest, with larger magnitudes 1336 

of net  both above and below this mid depth.   1337 

 1338 

1339 
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 1340 

 1341 

Figure 7. Sketch of a cross-section through an ocean basin whose bottom slope decreases with 1342 

depth.  The length in this plane on which significant diapycnal mixing occurs is proportional to 1343 

tand   and this is shown increasing with depth ( d  is constant in this figure).   1344 

 1345 

 1346 

 1347 

Figure 8.  An ocean cross-section through the sinking very dense Bottom Water Plume whose 1348 

buoyancy is BWPb .  With the ocean in a steady state, the volume transport of the Bottom Water 1349 

Plume is equal to the net diapycnal upwelling throughout the rest of the ocean, 1350 

net BBL SML  .  In the buoyancy budget analysis of appendix A we have considered the 1351 

diffusive and advective fluxes of buoyancy across the buoyancy surface in the BBL and 1352 

throughout the stratified ocean interior, but excluding the region inside the sinking Bottom 1353 

Water Plume.  The volume integrated buoyancy budget of Eqn. (B1) of appendix B applies to 1354 

the volume beneath the same buoyancy surface in the BBL and the stratified ocean interior, and 1355 

in this case the surface is completed by extending it horizontally through the sinking Bottom 1356 

Water Plume as shown in the figure.   1357 
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